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Problem 1: Wet Tree (3 points)

A tree is wet after a rain and slowly drips water, with one droplet falling from rest
every t = 1 s. At any time, exactly n = 5 droplets can be observed mid-air. Determine
the height h of the tree. Neglect air resistance.

Leave your answer to 2 significant figures in units of m.

Solution: Consider the falling motion of a single droplet. Let the time taken for the
droplet to reach the ground be T . From kinematics, we have:

h = 1
2gT 2

Throughout the duration of its fall, an additional n droplets must have fallen from the
tree, such that the nth additional droplet falls exactly when the initial droplet hits the
ground. This condition is necessary to ensure that there are always n droplets falling
mid-air. Hence, T must be related to t by:

T = nt

We can then solve for h:
h = 1

2g(nt)2 ≈ 120 m

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Problem A: Mysterious Rope (3 points)

Note: These alphabet problems are additional problems for SPhL (Junior) teams only.
In contrast, numbered problems are for both SPhL (Junior) and SPhL (Senior) teams.

A rope is connected to a vertical wall at one end, and a horizontal external force
F = 15.0 N pulls on the other end. The rope is in equilibrium and makes an angle
θ = 25.0° with the wall. What is the weight W of the rope?

Leave your answer to 3 significant figures in units of N.

Solution: The puzzling aspect of this problem is the apparent lack of information.
However, we need only to make an astute observation to solve the problem.

Since the rope makes an angle θ with the wall, and the tension in the rope acts along
the rope, we can write the following force balance equations for the horizontal and
vertical axes respectively:

T sin θ = F

T cos θ = W

Hence:

W = F cos θ

sin θ
= F cot θ

≈ 32.2 N

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem B: Stuck Sphere (3 points)

Note: These alphabet problems are additional problems for SPhL (Junior) teams only.
In contrast, numbered problems are for both SPhL (Junior) and SPhL (Senior) teams.

A uniform sphere of mass m = 1 kg and radius R = 5 cm is partially lodged within
a circular hole of radius r = 3 cm on a flat horizontal surface. We apply a constant
horizontal force F towards the sphere’s centre. What is the minimum F required to
remove the sphere from the hole? Assume that all surfaces are sufficiently rough such
that the sphere never slips.

Leave your answer to 2 significant figures in units of N.

Solution: Assume without loss of generality that the applied force F is directed right-
wards. For the sphere to roll towards the right, it must lose contact with the hole’s
left edge.

Hence, consider the torque on the sphere about the hole’s right edge. The hole’s left
edge exerts no torque since the contact force there is zero. The hole’s right edge also
exerts no torque since it is taken to be the pivot. F results in a clockwise torque of
F

√
R2 − r2, while the sphere’s weight results in an anticlockwise torque of mgr, as

drawn below.

4
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The sphere starts rolling when there is a net clockwise torque, which occurs when:

F
√

R2 − r2 > mgr =⇒ F > mg
r√

R2 − r2 ≈ 7.4 N

Once it begins rolling, it will continue to roll; the torque due to F increases while the
torque due to weight decreases as the sphere rotates about the pivot. Hence, as long
as F exceeds this minimum value, the sphere will certainly exit the hole.

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Problem C: Underwater Lamp (3 points)

Note: These alphabet problems are additional problems for SPhL (Junior) teams only.
In contrast, numbered problems are for both SPhL (Junior) and SPhL (Senior) teams.

A lit lamp is immersed in water of refractive index n = 1.33 on a dark night. It is
placed a height h = 5.0 m below the horizontal water surface. When viewed from
directly above, a bright circular patch of area A is visible on the water surface. Find
A. Assume that the lamp emits light in all directions.

Leave your answer to 3 significant figures in units of m2.

Solution: Consider a light ray travelling from the lamp to the water-air interface.
If its angle of incidence θi is smaller than the critical angle θc, the ray will undergo
refraction and emerge into the air, subsequently entering the eyes of an observer from
above. Conversely, if θi > θc, the ray will be totally internally reflected and will not
enter the air, and hence will not be visible to the observer.

As such, consider a vertical cone of height h and half-angle θc centred on the lamp.
All light rays within this cone satisfy θi < θc and will be seen by the observer, whereas
all light rays outside this cone have θi > θc and will not reach the observer. The
illuminated region will thus be the base area of this cone.

6
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Given the water’s refractive index n, its critical angle θc is given by:

θc = sin−1
(1

n

)

Based on the cone’s geometry, the radius r of the base of the cone can be written as:

r = h tan θc = h√
n2 − 1

We can thus determine the area A of the bright circular patch, which is the cone’s
base area:

A = πr2 = πh2

n2 − 1 ≈ 102 m2

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Problem 2: Relative Work

A block of mass m = 1.0 kg is initially at rest on horizontal frictionless ground. A
horizontal non-constant force F (t) is exerted on the block for some time, after which
the block has a final speed v = 4.0 m s−1 relative to the ground.

(a) From the perspective of an observer that is stationary relative to the ground,
find the net work done W by force F on the block.

Leave your answer to 2 significant figures in units of J. (2 points)

(b) From the perspective of another observer that travels at constant horizontal
speed u relative to the ground, the net work done W ′ by force F on the block is
zero. Find u.

Leave your answer to 2 significant figures in units of m s−1. (2 points)

Solution:

(a) The block is initially stationary, so its initial kinetic energy is zero. The block
has a final speed of v, so its final kinetic energy is 1

2mv2. The change in kinetic
energy is thus 1

2mv2, and by the work-energy theorem, this is equal to the work
done W by force F :

W = 1
2mv2 = 8.0 J

(b) u = 2.0 m s−1 . In the reference frame travelling at u = v
2 , the block has an

initial velocity −v
2 , and a final velocity v

2 ; the initial and final velocities are
of equal magnitude but in opposite directions. However, kinetic energy only
depends on the magnitude and not the direction of velocity, so the initial and
final kinetic energies are both 1

2m
(

v
2
)2. As such, the change in kinetic energy is

zero, so the work done W ′ is also zero by the work-energy theorem.

In general, the work done by a force depends on which reference frame the observer is
in. One way to see this is using the work-energy theorem, as illustrated in this problem.
Alternatively, you could consider the more fundamental definition W = F⃗ · x⃗. In a
different reference frame, there is no change to force F⃗ (at least according to classical
mechanics), but there is a change to the perceived displacement x⃗ over which the force
is applied.

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Problem D: L (3 points)

Note: These alphabet problems are additional problems for SPhL (Junior) teams only.
In contrast, numbered problems are for both SPhL (Junior) and SPhL (Senior) teams.

A thin uniform L-shaped bar with arm lengths l and 3l is hung on a frictionless pin
of negligible radius at its right-angled corner as shown. What is the angle θ that the
shorter arm makes with the vertical?

Leave your answer to 2 significant figures in units of degrees.

Solution: Let the mass of the shorter arm be m, so the mass of the longer arm is 3m.
Balance torques about the pivot point (which is the pin) to obtain:

mg
l

2 sin θ = 3mg
3l

2 sin(90° − θ)

Simplify the equation and use sin(90° − θ) = cos θ to obtain:

sin θ = 9 cos θ

tan θ = 9
θ ≈ 84°

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 3: Variable Resistor

Chris creates an arrangement of 5 resistors as shown in the diagram, one of which is
a variable resistor R. Here, we let the effective resistance across A and B be RAB.

(a) What value does RAB approach as the value of R approaches 0?

Leave your answer to 2 significant figures in units of Ω. (2 points)

(b) What value does RAB approach as the value of R approaches ∞?

Leave your answer to 2 significant figures in units of Ω. (2 points)

Solution:

(a) Since R → 0 can be represented as a short circuit, we can redraw the diagram:

Hence:

RAB =
 1

3 +
(1

1 + 1
4
)−1 + 1

2


−1

≈ 1.3 Ω

(b) Similarly, R → ∞ can be represented as an open circuit; we can once again
redraw the diagram:

10
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Hence:

RAB = 4 +
(1

3 + 1
1 + 2

)−1

= 5.5 Ω

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Problem 4: A Sinking Feeling (3 points)

A worker uniformly mixes two materials, one with density ρ1 = 600 kg m−3 and the
other with density ρ2 = 1900 kg m−3, and shapes them into a cube.

He then places the cube underwater, such that it is fully submerged with its top
surface at a depth d = 4.4 m below the surface of the water, and releases it from rest.
Surprisingly, the cube stays in position there.

Find η, the proportion (by volume) of the cube that is made with the material of
density ρ1.

Leave your answer to 2 significant figures.

Your answer should be between 0 and 1.

Solution: Let the side length of the cube be h. The weight of the cube is Mg =
[ρ1η + ρ2(1 − η)]gh3. The buoyant force is F = ρwgh3, given by the difference in water
pressure acting on the top and bottom surfaces.

At equilibrium, these forces are equal, therefore:

ρw = ρ1η + ρ2(1 − η) = (ρ1 − ρ2)η + ρ2

Intuitively, this also makes sense, as the average density of the cube would be equal to
the density of water for the cube to be in equilibrium when fully submerged. Solving
this for η, we obtain:

η = ρ2 − ρw

ρ2 − ρ1
≈ 0.69

Setter: Galen Lee, galen.lee@sgphysicsleague.org
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Problem E: Gas Weighing Scale (3 points)

Note: These alphabet problems are additional problems for SPhL (Junior) teams only.
In contrast, numbered problems are for both SPhL (Junior) and SPhL (Senior) teams.

Physicist S has designed a weighing scale that uses gas pressure. It consists of a
cuboidal container, which has a square base of side length L = 20 cm. The top face
of the container is light and able to freely slide up and down without resistance. The
container is filled with an ideal gas such that the top face is at initial height H = 10 cm.
When Physicist S steps onto the top face of the container, it lowers by d = 1.3 cm.
Assuming that the container is a perfect thermal conductor and airtight, find her mass
m.

Leave your answer to 2 significant figures in units of kg.

Solution: Given that the container is perfectly conducting, the ideal gas inside remains
at room temperature throughout, and given that it is airtight, the number of moles n
of gas inside the container remains constant. Hence, PV must be a constant, where P
is the pressure of the ideal gas and V is the volume of the container. Since V = L2h,
where h is the height of the top face, and L is a constant, Ph must be a constant.
Letting the initial and final pressures of the ideal gas be P0 and P1 respectively, we
thus have:

P1(H − d) = P0H ⇒ P1 = H

H − d
P0

Initially, P0 = Patm to ensure that the top face of the container remains in equilibrium.
When Physicist S steps on the scale, the force exerted by the gas on the top face of
the container balances out both the force exerted by the atmosphere and the weight
of Physicist S. Thus, balancing forces and dividing by the base area throughout, we
have:

P1 = P0 + mg

L2

13
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H

H − d
P0 = P0 + mg

L2 ⇒ m = L2

g

(
d

H − d
P0

)
≈ 62 kg

Setter: Shen Xing Yang, xingyang.shen@sgphysicsleague.org
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Problem F: Help! (3 points)

Note: These alphabet problems are additional problems for SPhL (Junior) teams only.
In contrast, numbered problems are for both SPhL (Junior) and SPhL (Senior) teams.

Roger is trying to learn how to tightrope walk, on a light horizontal elastic rope with
force constant k = 650.0 Nm−1 and unstretched length l = 20.0 m that is connected
to two walls a distance l apart. Suddenly, he slips and falls halfway along the rope.
Luckily, he grabs onto the rope and manages to hang there. The rope reaches an
equilibrium position bent at an angle θ = 20.0° from the horizontal. Calculate Roger’s
mass m.

Leave your answer to 3 significant figures in units of kg.

Solution:

Consider each half of the rope with unstretched length l
2 . Since the full rope has

force constant k, each half of the rope on its own has force constant 2k. Now let the
extension of each half of the rope be x. We can now write the following equations:

T = 2kx (1)

15
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l

2 + x

)
cos θ = l

2
(2)

2T sin θ = mg (3)

Equation (1) is the expression for the tension in each half of the rope based on their
extension. Equation (2) is the geometric relationship between the stretched rope and
unstretched rope. Equation (3) is the force balance equation for the mass m. We have
3 equations with 3 unknowns: T , x and m. Thus we can solve for m:

m = 2kl sin θ(sec θ − 1)
g

≈ 58.2 kg

P.S. That is actually Roger’s mass.

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 5: Suspended Triangle

Two identical uniform equilateral triangles of mass M are suspended by 4 vertical
strings (as shown in the diagram). Strings 1 and 2 can withstand twice the amount of
tension as strings 3 and 4 before breaking.

(a) Which string will break first as M increases? (2 points)

(1) String 1

(2) String 2

(3) String 3

(4) String 4

(5) All will break at the same point.

(b) Let Tn be the tension in string n. If M = 5.0 kg, find the value of T2 + T4.

Leave your answer to 2 significant figures in units of N. (3 points)

Solution:

(a) Let us consider the system of the two masses, with only strings 1 and 2 as
external interactions. Since the centre of mass is in the middle (by symmetry),
T1 = T2 = 1

2(2Mg) = Mg.

Now, comparing between strings 3 and 4, the weight of M is distributed more
towards the left. Hence, T3 > T4; in particular, since T3 + T4 = Mg, we can say
that T3 > Mg/2.

Since strings 1 and 2 can take twice the tension of strings 3 and 4, the first string
to break will be (3) String 3 .

17
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(b) In an equilateral triangle, the centre of mass is at its geometric centre — by
some geometry, we can work out that this lies 2/3 along the horizontal in its
current orientation, being closer to its thicker end.

We have previously found T2; to find T4, we consider moments about the centre
of mass of the bottom triangle. Letting the horizontal distance between strings
3 and 4 be L, we solve the following pair of equations simultaneously:

1
3LT3 − 2

3LT4 = 0

T3 + T4 = Mg

We can see that T4 = 1
3Mg. Hence, T2 + T4 = 4

3Mg ≈ 65 N .

Setter: Paul Seow, paul.seow@sgphysicsleague.org

18

mailto:paul.seow@sgphysicsleague.org


SPhL 2023 8 July 2023

Problem 6: Video Misinformation (3 points)

A fan blade rotates clockwise at a constant angular velocity ω. A fixed camera records
a video of it with a frame rate of f = 30 frames per second. In that video, the fan
blade appears to be rotating clockwise at angular velocity ω′ = 10 rad s−1. However,
the actual value of ω differs from ω′. Find the smallest possible value of ω.

Leave your answer to 2 significant figures in units of rad s−1.

Solution: Consider two consecutive frames in the video. The video has frame rate f ,
so the time interval between the two frames is T = 1

f . Since the fan blade looks like it
is rotating clockwise at ω′, its clockwise angular displacement from the first frame to
the second frame appears to be θ′ = ω′T = ω′

f .

Notice that if the fan blade had rotated a complete revolution plus angle θ′ within the
time T between the two frames, its angular displacement would only appear to be θ′.
In other words, an angular displacement of θ = θ′ + 2π would still show up as θ′ in
the video. In that case, the actual value of ω would be given by:

ω = θ

T
= ω′ + 2πf ≈ 200 rad s−1

The same logic applies when any integer n revolutions plus angle θ′ is covered between
two frames. In general, ω is given by ω = ω′ + n(2πf). Since the question only asks
for the smallest ω, only the n = 1 case needs to be considered. Nevertheless, it is
interesting to know that there are infinitely many possible ω values! n can even be
negative if the complete revolutions were in the anticlockwise direction, so the fan
could appear to be rotating in the direction opposite to its actual rotation.

This technically proves that rotation cannot be determined from video – there are
infinitely many possible values for ω. This phenomenon is also similar to the working
principle of a stroboscope: read more here.

Setter: Christopher Ong, chris.ong@sgphysicsleague.org

19

https://en.wikipedia.org/wiki/Stroboscope
mailto:chris.ong@sgphysicsleague.org


SPhL 2023 8 July 2023

Problem 7: YouTube (3 points)

A glass U-tube with refractive index n = 1.52 is constructed by bending a glass rod
into a U-shape, where the curved parts of the tube are two arcs of a semicircle. A
collimated beam of light falls perpendicularly on the flat surface A. Determine the
minimum value of the ratio R

d for which all light entering the glass through surface A
will emerge from the glass through surface B.

Leave your answer to 3 significant figures.

Solution: Consider all the rays passing through surface A. The ray with the smallest
angle of incidence θ on the outer bend of the U-tube will clearly be the rightmost ray.

We then consider the conditions under which the rightmost ray will undergo total
internal reflection before reaching B. If θ > θc, the critical angle beyond which total
internal reflection occurs, all the the rays entering through surface A will emerge

20
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through the surface B. Hence we require:

sin θ >
1
n

The geometry of the U-tube gives:

sin θ = R

R + d

Hence:
R

R + d
≥ 1

n(
R

d

)
min

= 1
n − 1

≈ 1.92

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 8: Choo Choo (3 points)

Thomas the Train is parked at the midpoint of two steep mountains of distance
d = 4000 m apart. He blows his horn and immediately begins travelling with con-
stant velocity v towards one of the mountains. Given that Thomas hears the echo of
the horn off the two mountains with a time difference of ∆t = 2.0 s, find v.

Take the speed of sound in air to be vs = 340 m s−1.

Leave your answer to 2 significant figures in units of m s−1.

Solution: Without loss of generality, assume Thomas travels to the right. We can
model the sound echoing off each mountain by mirroring the initial position of Thomas
across each mountain to act as two sound sources:

Now, we consider the problem in the frame where Thomas is stationary. In this frame,
the sound approaching from the left source travels at a velocity of vs − v, and that
from the right travels at a velocity of vs + v. As the source only emits sound at the
very beginning, each sound traverses a distance d. Hence, we have:

∆t = d

vs − v
− d

vs + v

= 2dv

v2
s − v2

22
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Rearranging this yields the quadratic equation:

∆tv2 + 2dv − ∆tv2
s = 0

Solving, we obtain v ≈ 29 m s−1 .

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Problem 9: Jaywalking (3 points)

Jay stands at the south edge of a road which runs from east to west, intending to cross.
He notices that a car is travelling west at vc = 30 km h−1, keeping to the opposite
edge of the road. Given that Jay can run at a speed vj = 10 km h−1, what angle θ
(measured counterclockwise from north) should he run at to maximise the distance
between him and the car upon reaching the other side of the road? You can assume
that the car has not passed Jay when he reaches the other side of the road.

Leave your answer to 3 significant figures in units of degrees.

Solution: We consider this problem in the frame of the car. In this frame, the road
travels to the east at a velocity of −v⃗c. Hence, we see that Jay’s velocity in that frame
is given by the vector sum v⃗j − v⃗c.

As Jay wants to travel as little to the east as possible in the frame of the car, he wants
to maximise the angle of inclination of his velocity in that frame. Since the locus of
points that represents his range of potential velocities is a circle that does not contain
the origin, this maximum will be given by a tangent line to the circle from the origin.

Since v⃗j must be perpendicular to v⃗j − v⃗c, we have:

θ = sin−1
(

vj

vc

)
≈ 19.5°

24
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Alternative solution: We could instead let the width of the road be h. Running at
an angle of θ, Jay would take a time of t = h

vj cos θ to cross the road, moving west by
distance vjt sin θ. At the same time, the car would also have moved a distance of vct.
Hence, we want to maximise the difference in distances:

∆x = (vc − vj sin θ) h

vj cos θ

= h

 vc

vj cos θ
− tan θ



By differentiation (or plotting the graph on Desmos), we also find that the maximum
occurs at sin−1

(1
3
)

≈ 19.5° .

Setter: Ariana Goh, ariana.goh@sgphysicsleague.org
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Problem 10: Unfreezable (4 points)

Consider an isolated system of pure water that is supercooled to a temperature of
Ti = −15◦C, such that it remains completely liquid. When the supercooled water is
disturbed, some but not all of the water freezes. Determine the percentage by mass
of water that gets frozen.

Assume the specific heat capacity of ice to be equal to the specific heat capacity of wa-
ter, which can be treated to be constant at cw = 4.19×103 J kg−1 K−1. The specific la-
tent heat of fusion of water can also be treated to be constant at lf = 3.34 × 105 J kg−1.

Leave your answers to 2 significant figures as a percentage. (For example, if you think
the final answer should be 51%, input your answer as 51)

Solution: When water freezes, it releases heat. This heat raises the temperature of the
surroundings, which might rise above the freezing point of water, causing the freezing
process to halt.

Let the total mass of water be M , and the mass of water that eventually freezes be
m. The total heat Q released upon freezing mass m of water is given by:

Q = mlf

This heat Q causes the entire system’s temperature to rise by ∆T :

Q = Mcw∆T

No more water can freeze once the temperature of the system exceeds freezing point
Tf . This occurs when ∆T = Tf − Ti. Hence, we can solve for m

M :
m

M
= cw

lf
(Tf − Ti) ≈ 19%

Note that this assumed the specific heat capacity of ice, ci, to be equal to the specific
heat capacity of water, cw. Had we not made this assumption, the problem would have
been a lot harder to solve. The temperature increase would have to be considered in
infinitesimal steps, i.e. with every infinitesimal mass dm of water that gets frozen.
The fraction m

M would then be given by:

m

M
= cw

ci − cw

[
e

ci−cw
lf

(Tf −Ti) − 1
]

Using the conventional value ci = 2.09×103 J kg−1 K−1, this works out to be m
M ≈ 18%.

Not a big physical difference, just a lot tougher to work out mathematically. For the
mathematically inclined, you are recommended to derive this expression, and prove
that it is equal to the previous result when we set ci ≈ cw.

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Problem 11: Falling Chimney

A chimney-shaped block of mass M = 3.0 kg slides down a rooftop (beginning from
rest) tilted at an angle θ, with a slanted base and its top face perfectly horizontal. A
massless pulley is attached to a corner of the block and a light inextensible string is
run over the pulley, with a smaller block of mass m = 1.0 kg attached to each side of
the string. Take all surfaces to be frictionless.

(a) Find the value of θ such that the blocks slide down sticking together (i.e. they
do not have any movement relative to each other).

Leave your answer to 3 significant figures in units of degrees. (2 points)

(b) Suppose now that θ = 0°. Find A, the magnitude of the initial acceleration of
the large block of mass M when the blocks are released from rest.

Leave your answer to 2 significant figures in units of m s−2. (4 points)

Solution:

(a) If all three stick together as they slide downwards, we can say that they all
have the same acceleration. Hence, we analyse the problem from the frame of
reference of the blocks, where all three are stationary, i.e. in equilibrium.
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In this frame, the remaining component of gravity is perpendicular to the surface.

We now observe that our angle θ must allow the two smaller blocks to be in
equilibrium. By symmetry, this occurs when the blocks’ line of symmetry is also
perpendicular to the surface of the roof.

Hence, 2θ = 90°, and as a result, θ = 45.0° .

(b) We redraw the diagram in a more informative manner:

Now, let the acceleration of the mass M be A, and the acceleration of the upper
mass m be a. Then, by considering the conservation of the string length, the
downward acceleration of the lower mass m will be a + A.

By Newton’s 2nd Law, we can write the following for each block:

MA = T

ma = T

m(a + A) = mg − T

Solving these simultaneously, we can see that

A = m

m + 2M
g

= g

7
≈ 1.4 m s−2

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Problem 12: Spring Collision

A playground ride is made of a platform of mass M connected to a light spring of force
constant k, that oscillates in simple harmonic motion with amplitude x0. When the
platform is at maximum displacement from equilibrium, Roger of mass m = M

3 jumps
such that he lands perfectly vertically on the platform. Subsequently, Roger sticks
on and remains at rest relative to the platform, and the combined body oscillates in
simple harmonic motion with amplitude x1.

(a) What is x1
x0

?

Leave your answer to 3 significant figures. (2 points)

(b) Now consider the case where Roger jumps onto the platform when the platform
is at displacement x = 3

4x0 instead. The combined body then oscillates with
amplitude x2. What is x2

x0
?

Leave your answer to 3 significant figures. (3 points)

Solution:

(a) The relationship between total energy of the system and amplitude of a mass in
SHM is given by E = 1

2kx2
0, which is essentially the elastic potential energy stored

in the spring when the mass is at maximum displacement from equilibrium. Since
k is a constant, the amplitude of a mass in SHM is solely determined by the total
energy of the system.

When mass m is dropped onto mass M , we can model the collision as an inelastic
collision in the horizontal axis with m initially having zero velocity. We also
ignore any momentum considerations in the vertical axis. Hence, we can write
the following equations to determine the final velocity v2 of the spring just after
the collision:

Mv = (M + m)v2

v2 = M

M + m
v

where v is the velocity of mass M just before the collision. For (a), m lands on
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M when it is instantaneously at rest, hence all the energy is stored in the spring.
The inelastic collision yields no loss of kinetic energy, so the total energy of the
system remains constant. Hence, the amplitude remains constant.

x1
x0

= 1.00

(b) The velocity of M before the collision v is found by the conservation of energy
during SHM.

1
2Mv2 + 1

2k

(3
4x0

)2
= 1

2kx2
0 ⇒ v =

√√√√ 7
16

k

M
x0

So the final total energy Ef of the system after the inelastic collision is given by:

Ef = Ep + Ek

= 1
2(M + m)v2

2 + 1
2k

(3
4x0

)2

= 1
2(M + m) M 2

(m + M)2

( 7
16

k

M
x0

2
)

+ 9
32kx0

2

=
 7M

32(m + M) + 9
32

 kx0
2

The amplitude of the oscillating system is proportional to the square root of its
total energy, provided that k is constant. Hence substituting M : m = 3 : 1, the
ratio of amplitudes x2

x0
is given by:

x2

x0
=
√√√√Ef

Ei

=

√√√√√√ 7M
32(m+M) + 9

32
1
2

≈ 0.944

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 13: Balanced Plates (4 points)

A capacitor consists of one plate of area A = 2.0 m2 and mass m = 2 g attached
to the ceiling, and a second plate of identical mass and dimensions floating freely at
distance d = 2.0 cm below the top plate. What voltage V should be applied across
the capacitor such that the bottom plate remains stationary? You may neglect edge
effects.

Leave your answer to 2 significant figures in units of V.

Solution: Without loss of generality, suppose that the top plate has charge Q and
the bottom plate has charge −Q. The electric field due to the top plate is E = Q

2Aϵ0
,

pointing downward at the position of the bottom plate. (This result is derived from
Gauss’ Law.)

Therefore, the bottom plate experiences an upward electrostatic force

F = QE = Q
Q

2Aϵ0
= Q2

2Aϵ0

Since Q is related to V and the capacitance C by Q = CV and the capacitance of two
parallel plates is given by C = ϵ0A

d ,

F = (CV )2

2Aϵ0
=

(
ϵ0A
d V

)2

2Aϵ0
= ϵ0AV 2

2d2

Balancing this force with the weight of the bottom plate,

ϵ0AV 2

2d2 = mg =⇒ V =
√√√√2mgd2

ϵ0A
≈ 940 V

Setter: Galen Lee, galen.lee@sgphysicsleague.org
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Problem 14: Strange Sphere (4 points)

A sphere is made up of two uniform solid hemispheres of different densities joined
together. It is placed on a slope inclined at angle θ from the horizontal. Given
that the hemispheres’ densities and the sphere’s rotation can be freely varied, what
is the maximum angle θ for which the sphere can rest in equilibrium on the slope?
Assume the coefficient of static friction is sufficiently large for the sphere to remain in
translational equilibrium.

Leave your answer to 3 significant figures in units of degrees.

Solution: For the sphere to rest in equilibrium on a slope, the line of action of its
weight must pass through the contact point between the sphere and the slope. For
uniform spheres, this is clearly not possible since the centre of mass is always in the
geometric centre of the sphere. However, since this special sphere is made with two
hemispheres of different densities, the position of its centre of mass can lie at some
distance r from the geometric centre, towards the heavier half.

The sphere can be placed on the slope in any orientation, such that the possible
positions of the centre of mass trace a circle of radius r. For a slope angled downwards
to the left with angle of inclination θ, the centre of mass should be as far to the right
of the sphere as possible, so that the line of action of the sphere’s weight still passes
through the point of contact for greatest possible θ.
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This is done by maximising r, which occurs when one hemisphere has infinitely large
density and the other hemisphere has negligibly small density, so the setup is essentially
made up of only the heavier hemisphere. The sphere is then oriented such that the
heavier hemisphere is on the right, for r to lie as far horizontally right as possible.

For a uniform hemisphere, the distance of its center of mass from the flat face Rcm is:

Rcm = 3
8R

From the diagram, we can write:

sin θ =
3
8R

R

= 3
8

θ = arcsin
(3

8

)

≈ 22.0°

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 15: Nuclear Fusion

(a) In a fusion power experiment, a mobile deuterium nucleus is fired at a stationary
deuterium nucleus such that they have relative velocity v1 right before collision.
The two undergo nuclear fusion to form only a helium-4 nucleus. There are no
other particles in the reaction chamber for them to interact with. Find v1.

Leave your answer to 2 significant figures in units of km s−1. (2 points)

If there exists either zero or multiple possible values of v1, input your answer
as −1.

(b) In another fusion power experiment, a mobile helium-4 nucleus is fired at a
stationary helium-4 nucleus such that they have relative velocity v2 right before
collision. The two undergo nuclear fusion to form only a beryllium-8 nucleus.
There are no other particles in the reaction chamber for them to interact with.
Find v2.

Leave your answer to 2 significant figures in units of km s−1. (3 points)

If there exists either zero or multiple possible values of v1, input your answer
as −1.

You should assume that all nuclei involved, including the nuclei produced by the
reaction, are in their ground states.

Data:
Rest mass of deuterium nucleus: mD = 2.01410178 u
Rest mass of helium-4 nucleus: mHe = 4.00260325 u
Rest mass of beryllium-8 nucleus: mBe = 8.00530510 u

Solution: At first glance, the problem appears ludicrous: you are given only the
knowledge that a perfectly inelastic collision occurs, and asked to determine the initial
velocity with no other information! However, the masses of the nuclei in the problem
should provide a hint that a relativistic energy conservation relation can be expressed
here.

In a classical inelastic collision, energy can be lost to “the surroundings” in the form
of heat and sound. This is actually the conversion of the kinetic energy of bulk motion
to kinetic energy of the surrounding air molecules, as well as random motion kinetic
energy of the individual particles of the objects colliding. On the level of individual
particles, there can be no distinction between bulk motion and random motion, and
in these experiments there are no surrounding air molecules to transfer energy to, so
even an inelastic collision must conserve energy. Using the mass-energy equivalence
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equation E = mc2, we thus see that the relativistic masses1 of the reactants and
products must be the same.

(a) In the rest frame of the helium-4 nucleus produced, i.e. the centre of mass frame
of this system, it has mass mHe. Hence, each deuterium nucleus must have
relativistic mass 1

2mHe = 2.00130163 u. However, this is lower than mD, the rest
mass of a deuterium nucleus. This hints to us that even if the deuterium nuclei
start off both stationary, they must lose energy in order to fuse into a helium-4
nucleus, which they cannot do in this problem. Hence, there is no possible value
of v1, and the answer is −1 .

(b) In the rest frame of the beryllium-8 nucleus produced, i.e. the centre of mass
frame of this system, it has mass mBe. Hence, each helium-4 nucleus must have
relativistic mass 1

2mBe = 4.00265255 u. This is more than the rest mass mHe of
helium-4, and the difference between the two gives us the kinetic energy of each
helium-4 nucleus in the frame of the beryllium-8 by the mass-energy equivalence.
Since this difference in mass is small, we can solve the rest of this problem using
classical mechanics.

For each helium nucleus moving at v in the centre of mass frame:(1
2mBe − mHe

)
c2 = 1

2mHev
2

Thus, v = 1500 km s−1. Since the two helium-4 nuclei are both moving with
v = 1500 km s−1 towards each other, v2 = 2v = 3000 km s−1 .

The problem author would like to note that she feels that the relativistic method
is more straightforward and originally solved the problem with that approach.
Unfortunately, relativity is out of scope for H2/H3 physics, so the within-scope
solution has been presented as the intended one. The relativistic solution uses
the fact that m = γm0 to find γ = mBe

2mHe
, finds v from γ, and then uses relativistic

velocity addition to find v2 = 2v

1+ v2
c2

. The two answers differ by only about 1 part
in 30000, which is only a small deviation from the classical solution.

Setter: Shen Xing Yang, xingyang.shen@sgphysicsleague.org

1The relativistic mass m is given by the relation m = γm0 for a particle of rest mass m0 and velocity v, where
γ = 1√

1− v2
c2

is the Lorentz factor.
35

mailto:xingyang.shen@sgphysicsleague.org


SPhL 2023 8 July 2023

Problem 16: Public Nuisance (4 points)

Bobbins is trying to set a football on a travelator that is moving leftward at constant
velocity u = 5.0 cm s−1, such that the ball appears to be rolling on the spot to a
stationary observer.

As such, he imparts an initial velocity v (relative to himself) to the ball, without
imparting any rotation, as he places it on the travelator. Modelling the ball as a
uniform solid sphere, find v such that he succeeds in his goal.

Leave your answer to 2 significant figures in units of cm s−1.

Leave your answer as positive if you think the velocity should be rightward, and as
negative if you think the velocity should be leftward.

Solution: For the ball to appear to be rolling on the spot to a stationary observer,
the ball must rotate clockwise. This rotation is caused when the friction from the
travelator on the ball “converts” its translational velocity to angular velocity. Since
the ball starts off not rotating, the frictional force must be leftward to provide the
clockwise torque that rotates the ball. This leftward frictional force also decreases the
ball’s translational velocity, which must therefore be initially v rightward (positive in
this context).

Suppose the ball has mass m and radius r, and hence moment of inertia I = 2
5mr2. Let

the time taken for the ball to reach the state of rolling on the spot be t and consider
a frictional force f . Then, the translational impulse on the ball due to friction is ft
and the rotational impulse on the ball due to friction is frt.

The initial velocity of the ball is v and the final velocity is 0. Hence, by the impulse-
momentum theorem,

mv − ft = 0 =⇒ v = ft

m
The initial angular velocity of the ball is ω0 = 0 and the final angular velocity of the
ball is ω1 = u/r. By a similar rotational impulse-momentum theorem, it follows that:

0 + frt = Iω1 =⇒ frt
2
5mr2 = u

r
=⇒ ft

m
= 2u

5
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Therefore,
v = 2u

5 = 2.0 cm s−1

Setter: Galen Lee, galen.lee@sgphysicsleague.org
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Problem 17: Unknown Motion (3 points)

A charged particle is in a magnetic field within a three-dimensional space described
by the standard Cartesian axes x, y, z. The magnetic field strength and direction
varies with time and space. Initially, the particle has velocity vx = 200 m s−1 and
vy = 210 m s−1. After travelling in the magnetic field for some time, the particle has
travelled a distance of d = 500 m and has vz = 290 m s−1. Find |⟨⃗a⟩|, the magnitude
of the average acceleration of the particle. Assume there is no gravity.

Leave your answer to 3 significant figures in units of m s−2.

Solution: Consider the particle’s velocity v⃗ = v⃗x + v⃗y + v⃗z. Since F⃗B = qv⃗ × B⃗, F⃗B

always acts perpendicularly to v⃗. Hence, no work is done on the particle, so its kinetic
energy, and thus the magnitude of its velocity, remains constant.

Initially, |v⃗| =
√

2002 + 2102 = 290 m s−1. This means that when the particle has
v⃗z = 290 m s−1, both v⃗x and v⃗y must be 0. Any non-zero value would violate the fact
that the magnitude of the resultant velocity does not change.

Next, we can determine the time taken ∆t for the particle’s journey. Since its velocity
remains constant at 290 m s−1 and the particle is always travelling in the direction of
its resultant velocity, ∆t = 500

290 s.

Hence, the average acceleration is:

|⟨⃗a⟩| =

∣∣∣∣∣∣∣∣


⟨⃗ax⟩
⟨⃗ay⟩
⟨⃗az⟩


∣∣∣∣∣∣∣∣

=

√√√√√ |∆v⃗x|
∆t

2

+
 |∆v⃗y|

∆t

2

+
 |∆v⃗z|

∆t

2

=
√

(−200)2 + (−210)2 + (290)2

500/290
≈ 238 m s−2

Setter: Gerrard Tai, gerrard.tai@sgphysicsleague.org
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Problem 18: Curious Pendulum (4 points)

Guangyuan is standing at a point on Earth with latitude θ = 45°. He suspends a
simple pendulum at rest from a ceiling. Surprisingly, he claims that the pendulum
does not hang completely vertical but instead is offset by an angle ϕ from the vertical,
where the vertical axis is defined normal to the ground. Calculate ϕ.

Take the radius of Earth to be R = 6370 km, and the period of Earth’s rotation to be
T = 24.0 h.

Leave your answer to 3 significant figures in units of degrees.

Solution: The key reason why the pendulum does not hang straight is due to the
rotation of the Earth. A centripetal force, directed at angle θ from the vertical,
is required to keep the pendulum rotating about Earth’s axis. This is provided by
components of tension and weight parallel to the direction of the centripetal force
required. Let the mass of the pendulum bob be m. We can draw a free body diagram
on the pendulum bob as shown below.
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Balancing forces along the axes parallel and perpendicular to the direction of cen-
tripetal force, we obtain:

mg cos θ − T cos(θ + ϕ) = m(R cos θ)ω2 (1)

mg sin θ = Tsin(θ + ϕ) (2)

Rearranging (1), we obtain an expression for T :

T = m(g cos θ − (R cos θ)ω2)
cos(θ + ϕ)

Substituting this expression into (2), we can obtain an expression for ϕ:

ϕ = arctan
(

g tan θ

g − Rω2

)
− θ

≈ 0.0985°

As you can see, the angle of deviation from the vertical is very small and pretty much
undetectable to Guangyuan’s naked eye. He was probably capping.

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 19: Rainbow

A ray of light in air enters a spherical drop of water of index n = 1.33 at an angle
ϕ = 50° to the normal of the water surface.

(a) What is the angle of incidence α of the ray on the droplet’s back surface?

Leave your answer to 3 significant figures in units of degrees. (2 points)

(b) The light ray is partially reflected off the back surface, before exiting the drop
at some angle of deflection θ from its initial direction. For such a light ray that
reflects exactly once, find the angle ϕ that minimises θ. (3 points)

Leave your answer to 3 significant figures in units of degrees.

Solution:
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(a) Using Snell’s Law,

sin ϕ = n sin α

α = arcsin
(1

n
sin ϕ

)

≈ 35.2°

(b) We define angle x as labelled in the diagram. Using geometry,

α = ϕ − α + x

x = 2α − ϕ

θ = 180° − 2x

= 180° − 4α + 2ϕ

To find minimum θ, set dθ
dϕ = 0.2

dθ

dϕ
= −4dα

dϕ
+ 2 = 0

dα

dϕ
= 1

2

= 1√
1 −

( 1
n sin ϕ

)2

(1
n

cos ϕ

)

1 − 1
n2 sin2 ϕ = 4

n2 cos2 ϕ

cos ϕ =
√√√√n2 − 1

3
ϕ ≈ 59.6°

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org

2You can also set dx
dϕ = 0 to obtain the same result, since minimising θ is equivalent to maximising x.
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Problem 20: Rolling Ring

A rigid ring rolls without slipping along horizontal ground, with constant translational
velocity v = 5.0 m s−1 towards the right. Consider 1000 points P1, P2, . . . , P1000 on the
ring, evenly spaced across the ring’s full circumference, with the first point P1 taken to
be the ring’s rightmost point. Denote their velocities as v⃗1, v⃗2, . . . , v⃗1000 respectively.

(a) Find |v⃗1|, the magnitude of point P1’s velocity.

Leave your answers to 2 significant figures in units of m s−1. (2 points)

(b) Find |v⃗1 + v⃗2 + ... + v⃗1000|, the magnitude of the sum of velocities of all 1000
points.

Leave your answers to 2 significant figures in units of m s−1. (2 points)

Solution: The motion of every point on the ring can be treated to be the combination
of (1) translational motion – a uniform translation with rightward velocity v; (2) a
rotational motion – a clockwise rotation with angular velocity ω. Since the ring does
not slip, we have the relation ω = v

r , where r is the ring’s radius.

(a) At point P1, the rotational motion results in a downward velocity of rω, while
the translational motion results in a rightward velocity of v. As v⃗1 is the vector
sum of these two components, its magnitude is given by:

|v⃗1| =
√

v2 + (rω)2 =
√

2v ≈ 7.1 m s−1

(b) Consider the vector sum v⃗1 + v⃗2 + . . . + v⃗1000 in terms of both the translational
parts and the rotational parts.

The translational parts sum to 1000v rightwards, since the translation is uniform
across all points.
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The rotational parts sum to a zero vector; the 1000 equal-length and equally
spaced tangential velocity vectors form the sides of a regular 1000-gon, so if you
align all of their velocity vectors tip-to-tail, they will form a closed loop and thus
produce a vector sum of zero.

Hence, summing the velocities’ translational and rotational parts, we have |v⃗1 +
v⃗2 + . . . + v⃗1000| = 1000v = 5000 m s−1 .

Incidentally, based on this result, the velocity averaged across all 1000 points
works out to be |v⃗1+v⃗2+...+v⃗1000|

1000 = v. Hence, this average velocity is equal to the
centre-of-mass velocity v! In fact, this comes quite intuitively — recall that
the velocity of the centre of mass of any system can be expressed as the mass-
weighted average of velocities of the masses in the system!

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Problem 21: Three-Body Problem (4 points)

Three planets of mass m1, m2 and m3 begin at rest with position vectors r⃗1, r⃗2 and
r⃗3 respectively. The masses are then released, and move only in the 2D plane of the
diagram below in a chaotic manner. After some time t, the position vectors of m1 and
m2 are r⃗1

′ and r⃗2
′ respectively. Find |r⃗3

′|, the distance from m3 to the origin at that
time.

Data:
m1 = 1.00 × 1024 kg
m2 = 2.00 × 1024 kg
m3 = 3.00 × 1024 kg
r⃗1 = (1.00, 0.00)
r⃗2 = (1.00, −2.00)
r⃗3 = (−1.00, 2.00)
r⃗1

′ = (3.93, −0.20)
r⃗2

′ = (−1.06, 0.59)

All position vectors are given in units of AU.

Leave your answer to 2 significant figures in units of AU.

-4 -2 2 4
x

-2

-1

1

2

y

Solution: The key to solving this problem is realising that there are no external forces
acting on the system and the initial velocity of the centre of mass is zero, so the
position of the centre of mass remains constant. Recall that the position of the centre
of mass can be given by the formula:

(xCM , yCM) = 1∑
mi

(∑
mixi,

∑
miyi

)
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We equate the position of the centre of mass at the beginning to the end. Multiplying
throughout by ∑

mi gives us:
(∑

mixi,
∑

miyi

)
=
(∑

mix
′
i,
∑

miy
′
i

)
Upon solving the equation, we have:

(x′
3, y′

3) ≈ (−0.60, 0.34)

Finally, we get:
|r⃗3

′| =
√

x′
3
2 + y′

3
2 ≈ 0.69 AU

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 22: Wire Distortion (4 points)

A circular loop of wire with radius r = 10.0 cm and resistance R = 5.00 mW is placed
in a uniform magnetic field B = 3.00 mT perpendicular to the plane of the loop.
The wire is pulled at opposite ends outwards such that it now forms an ellipse with
semi-major axis a = 12.0 cm. How much charge Q flows through the wire during this
process?

Leave your answer to 3 significant figures in units of C.

Use the formula p ≈ 2π
√

a2+b2

2 for the perimeter p of an ellipse with semi-major axis a

and semi-minor axis b.

Solution: Using Faraday’s Law of Electromagnetic Induction, the induced emf ϵ in the
loop is:

ϵ = dϕ

dt

= B
dA

dt

The total charge Q that flows through the wire during the distortion is given by:

Q =
∫

I dt

where I is the instantaneous current throughout the distortion process. But I = ϵ
R

and ϵ = B dA
dt , so we have:

Q =
∫ B dA

dt

R
dt

=
∫ B

R
dA

= B

R
△A
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Thus we only need to find the change in area △A of the shape formed by the wire
throughout the distortion process. △A is given by:

△A = πr2 − πab

where πr2 is the area of the original circular wire loop and πab is the area of the final
elliptical wire loop. Using the formula given in the problem, we can solve for b in
terms of p and a:

p = 2π

√√√√a2 + b2

2 ⇒ b =
√√√√ p2

2π2 − a2

The length of the wire remains constant no matter its shape. Hence, p = 2πr. Com-
bining all the above results:

Q = Bπ

R

(
r2 − a

√
2r2 − a2

)
≈ 0.00192 C

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 23: Interplanetary Bridge

Consider two planets, A and B, of masses MA = 1.0×1024 kg and MB = 2.0 × 1024 kg,
in circular orbits of radius RA = 1.0×1011 m and RB = 1.3×1011 m around a common
star of mass Ms = 2.0 × 1030 kg. The two planets are orbiting in the same direction.
You may assume that the planets are point masses and have no rotation about their
own individual axes.

(a) The planets have angular momentum LA and LB about the star. Determine the
ratio LA/LB.

Leave your answer to 2 significant figures. (2 points)

(b) The inhabitants of the planets have constructed a light indestructible link bridge,
which they connect when planets A and B are closest to each other. This joins
the two planets instantaneously. Determine the angular velocity ω of the two
planets about their centre of mass at the instant just after the connection is
made.

Leave your answer to 2 significant figures in units of rad year−1. (3 points)

Solution:

(a) The gravitational force acting on each planet provides its centripetal force for
its rotation:

mv2

r
= GMm

r2

v =
√√√√GM

r
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Since L = mvr = m
√

GMr, we can see that L ∝ m
√

r. Hence:

LA

LB
= MA

√
RA

MB

√
RB

≈ 0.44

(b) First, we find the position of the centre of mass relative to the two planets, RA,CM
and RB,CM:

MARA,CM = MBRB,CM

RA,CM + RB,CM = RB − RA

Hence, RA,CM = 2.0 × 1010 m and RB,CM = 1.0 × 1010 m. We shall now use
the centre of mass as our reference point about which we consider the bodies’
angular momentum, as the subsequent rotation is about this point. We also take
the motion to remain in the world frame.

The total angular momentum of the two planets about their centre of mass is
conserved after joining them together, as there is no external torque during that
instant. Hence, equating their total angular momentum about their centre of
mass before and after the bridge is formed:

MARA,CM

√√√√GMs

RA
− MBRB,CM

√√√√GMs

RB
= MAωR2

A,CM + MBωR2
B,CM

ω =
MARA,CM

√
GMs

RA
− MBRB,CM

√
GMs

RB

MAR2
A,CM + MBR2

B,CM
= 4.7 rad year−1

The conservation of angular momentum will apply regardless of our choice of
reference point. Hence, we can choose a point of convenience (in this case, the
centre of mass) as it allows us to directly calculate ω.

Setter: Huang Ziwen, ziwen.huang@sgphysicsleague.org
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Problem 24: Killer Coaster (3 points)

Roger is a worker at a theme park who dislikes his boss. His job is to maintain a
roller coaster with carts of mass m = 100 kg. One day, he paints a section of the roller
coaster near the bottom of its loop with reflective paint. At midday, his boss (who
sits in an office l = 75 m above the bottom of the roller coaster) was fried to a crisp,
bringing Roger great joy. If the roller coaster carts have a velocity of v = 35 m s−1

when they travel across that section, what is the normal force N exerted by the track
on the cart at the bottom? Assume that the rays from the sun are normal to the track
surface at the point where it is painted.

Leave your answer to 2 significant figures in units of N.

Solution: The reflective surface of the roller coaster acts as a mirror which focuses
light at a distance l away. The radius of a curvature of a lens is twice its focal length,
so the radius of curvature r = 2l. Now, we can write the expression for the centripetal
force

mv2

r
= N − mg

N = mv2

r
+ mg = mv2

2l
+ mg ≈ 1800 N

The moral of the story is to treat your employees well.

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 25: Boing Boing (5 points)

Roger watches a video of table tennis players juggling a ball on their bats, seemingly
indefinitely. Inspired, Roger tries his luck at replicating this trick with a physical
model.

A large plate of mass M = 0.50 kg is mounted on top of a spring of spring constant
k as shown in the diagram. The position x = 0 is defined as the equilibrium position
of the spring, with x being positive upwards. The spring is stretched by a distance
x0 = +0.070 m and released. Assume that the damping of the spring oscillations is
negligible.

At a certain time t = t0, a ball of mass m = 0.050 kg is dropped onto the cen-
tre of the plate and collides elastically with the plate while the plate is at position
x1 = +0.040 m. To Roger’s delight, the ball continues to collide with the plate indef-
initely, each collision appearing identical to the last. Determine the smallest possible
value of k.

Leave your answer to 3 significant figures in units of N m−1.

Solution: Firstly, we try to develop a qualitative understanding. The plate is under-
going simple harmonic oscillation, while the ball is in free fall under gravity. In order
for the collision to repeat itself in an identical manner, the position and velocities of
both objects before collision have to be constant for every collision. This implies that
the amplitude of oscillation of the plate remains constant at x0. However, the veloc-
ity of a body in simple harmonic oscillation can only take two values at a particular
position, and clearly the plate’s velocity cannot be unchanged after the collision. We
conclude that the plate’s velocity is reversed after the collision, while its magnitude
remains constant. Similarly, the ball’s velocity is also reversed after the collision while
its magnitude remains constant.
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For an elastic collision of two bodies, their velocities are reversed exactly in the frame
of their centre of mass3. This happens to be just what we want! The lab frame must
thus be the centre of mass frame right before the collision. If we were to define the
velocity of M and m right before the collision as V and −v respectively, then:

MV = mv

Next, we can apply conservation of energy for the plate to find V :

1
2kx2

0 = 1
2kx2

1 + 1
2MV 2

We also equate the time taken for the plate and ball to return to the position of
collision respectively. Since we are told to find the minimum value of k, we choose
the case where the plate completes less than one full oscillation before returning to
its collision point. Due to symmetry, we simply have to equate the time taken for the
plate and the ball to reach their maximal points respectively. For the ball, this time
t can be obtained easily:

t = v

g

For the plate, we consider the simple harmonic motion equation, x = x0 cos ωt, where
ω = k

M is the angular frequency of oscillation of the spring-plate system. At the point
of collision, x = x1 and at the lowest point, x = −x0. Solving for the argument of the
cosine term at these two points, we obtain:

t = 1
ω

(
π − cos−1

(
x1

x0

))

We can manipulate the equations above to obtain:

1
g

M

m

√√√√ k

M
(x2

0 − x2
1) = 1

ω

(
π − cos−1

(
x1

x0

))

Recalling that ω =
√

k
M , we have:

k = mg√
x2

0 − x2
1

(
π − cos−1

(
x1

x0

))
≈ 18.6 N m−1

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
3We see that MU + mu = MV + mv = 0 for two masses M and m with initial velocities U and u and final velocities

V and v. Hence we have v
V = u

U = − m
M , and if the velocities change then either both increase or both decrease, which

would violate energy conservation.
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Problem 26: Pulling a Rope

A uniform inelastic rope of linear mass density λ = 0.120 kg m−1 and length l = 2.00 m
is hung over a pole of negligible radius, such that both ends start at the same height.
Roger pulls one end downwards with a constant velocity v = 0.500 m s−1. The pole
exerts a constant frictional force f = 3.00 N as the rope slides over the pole.

(a) Find the acceleration acm of the centre of mass of the rope.

Leave your answer to 3 significant figures in units of m s−2. (3 points)

If you think the the centre of mass of the rope is not accelerating, input your
answer as acm = 0.00 m s−2.

(b) Find the pulling force F exerted by Roger when the end being pulled is a vertical
distance h = 0.400 m below the other end.

Leave your answer to 2 significant figures in units of N. (2 points)

Solution:

(a) Define scm, vcm, and acm as the displacement, velocity and acceleration of the
centre of mass of the rope respectively. Let the rope have moved a distance
x, meaning one end has risen by x and one end has fallen by x. In a small
time interval dt, the rope will have moved a small distance v dt. The small
displacement of the centre of mass of the rope dscm can then be modelled as due
to the small segment of rope at one end with mass λv dt being ‘transferred’ a
distance 2x downwards to the other end of the rope.

dscm = λv dt

λl
2x

= 2vx dt

l
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Therefore:

vcm = dscm

dt

= 2vx

l

acm = dvcm

dx

dx

dt

= 2v

l
v

= 2v2

l

= 0.250 m s−2

(b) Consider splitting the rope into 3 sections as shown below. The left end of the
rope has length l−h

2 while the right end has length l+h
2 . The sections are defined

such that they are fixed in space and do not move along with the rope.

Considering section 1, its velocity is upward and its mass is decreasing, hence
its rate of change of momentum is downward. Using Newton’s Second Law, we
have

λ
l − h

2 g − TA = λv2

where TA is the tension at point A.

Now consider section 2. The tangential acceleration must be zero since the rope
travels at constant speed. Since friction opposes the direction of motion, the
friction on the rope by the pole acts anticlockwise. The tension TB at point B
is thus given by:

TB = TA + f

Finally, looking at section 3, its velocity is downward and its mass is increasing,
so the rate of change of momentum is downward. We can thus apply Newton’s
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Second Law as follows to find the applied force F :

λ
l + h

2 g + F − TB = λv2 =⇒ F = f − λhg ≈ 2.5 N

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 27: Vertical Expansion

A uniform vertical rod is pivoted at its centre. This way, the top of the rod is at
distance y0 above the pivot, while the bottom of the rod is at the same distance y0
below the pivot.

We now apply a small amount of heat uniformly across the rod, causing it to expand.
As such, the top of the rod is now at distance y1 above the pivot, while the bottom of
the rod is at distance y2 below the pivot.

Assume that there is no heat flow within the rod and no heat loss to the surroundings.

(a) Select the correct relation between y1 and y2. (You may refer to the diagram
below to visualise the physical setup illustrated by each option.) (1 point)

(b) The rod has specific heat capacity c = 50 J kg−1 K−1, linear expansion coefficient
α = 8.0 × 10−3 K−1, and y0 = 10 m. Calculate the ratio y1 − y0

y2 − y0
.

Leave your answer to 3 significant figures. (4 points)

Solution: Throughout our analysis, we consider the upper portion of the rod (above
the pivot) and the lower portion of the rod (below the pivot) separately.

(a) (3) y1 < y2 . The upper portion is constrained at its bottom by the pivot, so its
centre rises upon expansion. Hence, the heat applied to the upper portion goes
partially into raising its GPE, and the rest is used to raise its temperature. On
the other hand, the lower portion is constrained at its top, so its centre drops
upon expansion. This means the heat applied to the lower portion, in addition to
the decrease in its GPE, is used to raise its temperature. The lower portion thus
gains a higher temperature than the upper portion, causing the lower portion to
expand further than the upper portion.
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(b) Denote the heat applied to each portion of the rod as Q, and the mass of each
portion as m. Considering the energy conversion taking place in the upper
portion of the rod as described above, we have

Q = mg

(
y1

2 − y0

2

)
+ mc∆T1

where ∆T1 is the change in temperature of the upper portion. We can relate
∆T1 to the change in length using the linear expansion formula:

y1 − y0 = αy0∆T1

Combining both equations, we have:

Q = (y1 − y0)
(

mc

αy0
+ mg

2

)

Let us now perform the same analysis for the lower portion of the rod, letting
its change in temperature be ∆T2.Q + mg

(
y2
2 − y0

2
)

= mc∆T2

y2 − y0 = αy0∆T2

=⇒ Q = (y2 − y0)
(

mc

αy0
− mg

2

)

The heat is applied uniformly, so the Q for both portions of the rod is identical.
As such, we may equate both expressions for Q, and derive the required ratio:

y1 − y0

y2 − y0
=

2c
αy0g − 1

2c
αy0g + 1

Right away, we can see that this ratio is smaller than 1, which agrees with our
qualitative reasoning in (a). Plugging in the numbers, we obtain y1−y0

y2−y0
≈ 0.984 .

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Problem 28: Bad Driver (4 points)

Paul is sitting on a fixed bus seat with his feet off the floor. Here, he is modelled as
3 thin, rigid rods of uniform mass density joined to each other, with dimensions as
shown in the figure. His seat consists of a base and a backrest. The coefficient of static
friction between Paul and the seat is µ = 0.5. The bus driver suddenly brakes at a
constant deceleration and Paul finds himself crashing into the seat in front of him.
Fuming, Paul decides to calculate the maximum bus deceleration a at which he would
have remained stationary. What is the value of a?

Leave your answer to 2 significant figures in units of m s−2.

Your answer should be positive.

Solution: Since the bus accelerates backwards, Paul experiences a fictitious force F
forwards in the frame of the bus. One might naively try to determine when Paul slips
forward in his seat, that is, when F exceeds the maximum force provided by the static
friction f , i.e. a = µg.

However, it is possible that Paul moves without slipping by rotating about the edge
of the seat. When Paul is about to rotate, his back loses contact with the back of the
seat, and his bottom lifts off the bottom of the seat. The contact force (normal and
frictional force) thus acts at the edge of the seat. Considering the torques about the
edge of the seat, we have only the clockwise torque due to F acting on Paul’s centre
of mass, which is equal to the counterclockwise torque due to his weight W acting on
his centre of mass.

To balance these torques, we first find the position of Paul’s centre of mass. We set
the bottom end of the rod 2l as the origin. Considering the centre of mass of each
rod, and using the centre of mass formula, Paul’s overall centre of mass is

(xCM , yCM) =
(3

8l,
3
8l

)
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Therefore,

F

(3l

8

)
= W

(
l

8

)

F = 1
3W

When this happens, by balancing horizontal forces, F = f , and by balancing vertical
forces, W = N . Therefore, f = 1

3N ≤ µN . This rotation toppling happens before
Paul slips horizontally, therefore, the maximum acceleration a is given by

a = 1
3g ≈ 3.3 m s−2

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 29: Power Saving Mode (4 points)

Paul is trying to save the Earth by replacing bulbs with diodes. In his setup, there are
six bulbs, each of resistance R, connected to an external voltage source as shown in
the diagram below. The voltage source is alternating, creating an electromotive force
in the form V = V0 cos ωt. The average power drawn by this setup over a long period
of time is P0. Now, one of the bulbs is replaced with an ideal diode, and the average
power drawn over a long period of time is P1. Determine the ratio P1

P0
.

Leave your answers to 2 significant figures.

Solution: In the original circuit, there is a potential difference of V
2 across each bulb,

so the average total power drawn by all six bulbs is

P0 = 6
(

Vrms

2
)2

R
= 3

2
V 2

rms

R

where Vrms is the root-mean-square voltage from the source.

When a diode replaces a bulb, the behaviour of the current in the circuit is different
in the forward and backward directions.

When the current flows forward across the diode, it acts as a path of zero resistance.
Hence, the remaining set of three bulbs in parallel each have a potential difference of
V across them, while the other two bulbs have no current passing through them.
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When the current is flowing backwards against the diode, it acts as a path of infinite
resistance. Effectively, we now have a set of two bulbs in parallel, which is in series
with a set of three bulbs in parallel. The potential difference across the set of two
bulbs is 3V

5 , and the potential difference across the set of three bulbs is 2V
5 .

The current flows forwards half the time and backwards half the time, so we can simply
take the average power drawn in the forward and backward cycles. The average total
power drawn is then

P1 = 1
2

3V 2
rms

R
+ 2

(3Vrms

5
)2

R
+ 3

(2Vrms

5
)2

R

 = 21
10

V 2
rms

R

P1

P0
= 1.4

It appears that trying to save power by replacing a bulb with a diode fails.

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 30: Infinite Energy

2n point charges are arranged in a straight line, each separated from its neighbour
by distance l = 5.0 mm. The charges have alternating signs, but the same magnitude
q = 1.5 × 10−6 C. The total potential energy of this system of charges is denoted by
Un. Take the potential energy of the system to be zero when the charges are far apart.

(a) Determine Un

2n for n = 2. This is the average potential energy contribution due
to each of the 2n charges.

Leave your answers to 2 significant figures in units of J. (3 points)

(b) Determine lim
n→∞

Un

2n .

Leave your answers to 2 significant figures in units of J. (3 points)

If the limit tends towards positive or negative infinity, input your answer as 1000
or −1000 respectively.

Solution:

(a) The formula for the potential energy between two point charges, q1 and q2,
separated by a distance r is:

U = 1
4πε0

q1q2

r

We can repeatedly apply this formula to each pair of charges in the system of
four charges, ensuring we only count each unique pair once:

U2 = 1
4πε0

q2

l

(
−3(1) + 2

(1
2

)
− 1

(1
3

))
= −7

3
1

4πε0

q2

l

Substituting the numerical values given, we get:

U2

2n
≈ −2.4 J

(b) As n tends towards infinity, the contribution of each charge to the total poten-
tial energy of the system tends to the same value. This is because from the
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perspective of any charge, there are infinitely many charges on either side of
it. Furthermore, the relative signs of the other charges from the perspective of
any charge is always the same. The contribution by a single charge to the total
potential energy is what we are looking for in our answer. Hence, our limit is:

lim
n→∞

Un

2n
= 1

2
1

4πε0

q2

l

2
∞∑

i=1
(−1)i1

i


The factor of 1

2 is included to ensure there is no over-counting, as each pair of
charges must only be accounted for once. The factor of 2 is due to the fact that
charges to the left and right of a point charge both contribute to the potential
energy. To evaluate the sum to infinity, we can simply sum the first ten terms,
which yields the same numerical answer to 1 significant figure. Alternatively, we
can use the series expansion of ln (1 + x) to find an exact value:

ln (1 + x) =
∞∑

i=1
(−1)i+1xi

i

Substituting x = 1, we get:

ln 2 =
∞∑

i=1
(−1)i+11

i

− ln 2 =
∞∑

i=1
(−1)i1

i

lim
n→∞

Un

2n
= − 1

4πε0

q2

l
ln 2

Substituting the numerical values given, we get:

lim
n→∞

Un

2n
≈ −2.8 J

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 31: High Level Golf (4 points)

Brian and Chris are playing a game of golf. Brian’s ball is at a distance d1 from the
hole and Chris’s ball is at a distance d2 from the hole. Aiming for the hole and hitting
each of their balls simultaneously, they each drive their ball too high; Brian’s ball
flies with speed v1 angled θ1 = 45◦ above the ground, while Chris’s flies with speed
v2 angled θ2 = 60◦ above the ground. Miraculously, the two balls collide at a height
h = 1 m perfectly above the hole. Given that d1 + d2 = 10 m, find v1 + v2.

Leave your answer to 3 significant figures in units of m s−1.

Solution: As the balls both have the same acceleration due to gravity, we can instead
consider what happens when there is no gravity, i.e. the two balls travel with constant
velocity. The balls now travel distances of ℓ1 = v1t and ℓ2 = v2t respectively before
colliding, where t is the time of the collision.

Due to the radial symmetry around the hole, we line up the balls’ trajectories along a
single flat plane to simplify our work:

As seen in the second diagram, the collision point (where the lines ℓ1 and ℓ2 meet)
must fulfil the geometric constraints set by the angles of launch. Hence, by considering
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its height above the ground:

d1 tan 45◦ = d2 tan 60◦

d1 =
√

3d2

=
√

3
1 +

√
3

(d1 + d2)

= 15 − 5
√

3

d2 = 1
1 +

√
3

(d1 + d2)

= 5
√

3 − 5

From the geometry, we also deduce that:

d1 = 1
2gt2 + h

t =
√√√√2(d1 − h)

g

≈ 1.043 s

Consequently:

v1 + v2 = ℓ1

t
+ ℓ2

t

= 1
t

(
d1

cos 45◦ + d2

cos 60◦

)

≈ 15.6 m s−1

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Problem 32: So Close Yet So Far (5 points)

A uniform magnetic field of field strength B = 0.500 T runs parallel to the axis of a
long insulating cylindrical shell of radius b = 35.0 m. A charged particle with mass
m = 0.0500 kg and charge q = 0.100 C is initially positioned at a distance a = 10.0 m
away from the axis of the cylinder. The particle is launched with speed v = 20.0 m s−1

in an arbitrary direction. What is the minimum time taken t for the particle to reach
the wall of the cylinder?

Leave your answer to 3 significant figures in units of s.

Solution: Firstly, we note that the velocity of the particle should be perpendicular to
the cylinder axis to minimise the time taken to reach the wall of the cylinder. This
restricts the motion of the particle to a 2D plane, where it is launched from some
position inside a circle of radius b and its path has to intersect the circle. The only
variable we can vary is the direction of launch, since just about everything else is fixed.

It might be tempting to think that the shortest path is simply a straight line. However,
due to the presence of the uniform magnetic field perpendicular to the plane of motion,
the particle will undergo circular motion and its path is an arc of a circle. A brute-force
approach of expressing the coordinates of the circular path and determining where it
intersects with the outer circle is possible, but would be extremely tedious. Thus, let
us try to geometrically determine the optimal path.

We notice that since velocity is constant, the time taken increases with the length of
the arc. Since the radius of the circular path is constant, the length of the arc will
increase with the length of the chord connecting the initial and final point in the path.
Hence, we see that the path of shortest time would simply be the arc for which the
chord is the shortest straight line from the particle’s starting position to the wall of
the cylinder.

We equate the magnetic force to the centripetal force to obtain the radius of curvature
of the path.

mv2

r
= Bvq

r = mv

Bq
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Now, we will obtain the length of the path the ball travels, l.

sin θ = b − a

2r
l = 2rθ

= 2r sin−1
(

b − a

2r

)

= 2mv

Bq
sin−1

Bq(b − a)
2mv


The time taken is therefore

t = l

v
= 2m

Bq
sin−1

Bq(b − a)
2mv

 ≈ 1.35 s

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 33: Problematic Proton (5 points)

Alice carries out experiments in a spherical charged gas cloud with radius R = 5.0 m
and uniform volume charge density +ρ. She releases an electron at rest at a distance
of r0 = 2.0 m from the centre of the cloud, and notices that it performs oscillatory
motion with period T1 = 0.60 s.

However, one day she accidentally releases a proton from the same position, and notices
that it reaches the surface of the gas cloud in a time T2. Determine T2.

Neglect any gravitational effects and collisions between the electron/proton and gas
particles, and assume that the gas particles remain stationary.

Leave your answer to 2 significant figures in units of s.

Solution: We can determine the electric field inside a charged sphere using Gauss’
Law.

4πr2E = ρ4
3πr3

ε0

E = ρr

3ε0

The acceleration experienced by the electron is:

r̈ = − eρ

3ε0me
r

This equation is in the form r̈ = −Ω2r, so the electron performs simple harmonic
motion about the centre of the sphere. The angular frequency Ω is given by:

Ω =
√√√√ eρ

3ε0me

If a proton is used, the acceleration experienced is away from the centre of the sphere.

r̈ = eρ

3ε0mp
= Ω2 me

mp
r

This equation is very similar to the equation for simple harmonic motion. Although
the negative sign is absent, we can use the fact that i =

√
−1 and proceed with

solving the equation. Using the initial conditions, r = r0, ṙ = 0, we can write the
general solution:

r = r0 cos
iΩ

√√√√me

mp
t
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Using the identity that cos ix = cosh x, we have:

r = r0 cosh
Ω

√√√√me

mp
t


Then, substituting r = R and t = T2, we have:

T2 = 1
Ω

√√√√mp

me
cosh−1

(
R

r0

)
= T1

2π

√√√√mp

me
cosh−1

(
R

r0

)
≈ 6.4 s

Alternative solution: For those unfamiliar with hyperbolic trigonometry, we can solve
the equation with other methods, one of which is presented here. A differential equa-
tion of the form r̈ = ω2r is solved by the general solution, x = Aeωt + Be−ωt. The
initial conditions for the proton are r = r0, ṙ = 0, so we have A = B = 1

2r0. Then,
taking ω =

√
eρ

3ε0mp
:

r = 1
2r0

(
eωt + e−ωt

)

Substituting r = R, t = T2, and solving a quadratic equation, we obtain:

eωT2 = R

r0
+

√√√√√(R

r0

)2
− 1

T2 = 1
ω

ln
R +

√
R2 − r2

0
r0


Notice that

ω = Ω
√√√√me

mp
= 2π

T1

√√√√me

mp

We can substitute this expression into our previous equation to obtain

T2 = T1

2π

√√√√mp

me
ln
R +

√
R2 − r2

0
r0

 ≈ 6.4 s

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 34: Triple Bounce

(a) A ball is projected horizontally from the top of an edge of a square pit with side
length ℓ. Consider the following scenarios:

A: an initial velocity vA makes the ball bounce three times only on the base,
before reaching the top of the opposite edge.

B: an initial velocity vB makes the ball bounce exactly once on each of the
three sides (including the base), before reaching the top of the opposite
edge.

Find the ratio vA/vB.

Leave your answer to 3 significant figures. (3 points)

(b) Scenario B is now modified such that the ball is projected at an angle θ below
the horizontal, bouncing off each of the three sides exactly once before reaching
the top of the opposite edge. In addition, its maximum height during its journey
exceeds its initial height by ℓ/2. Find θ.

Leave your answer to 3 significant figures in units of degrees. (3 points)

Assume all collisions are elastic, and no spin is imparted to the ball.

Solution:

(a) Since all collisions are elastic, the direction of the x-velocity flips while the y-
velocity remains unchanged. Hence, we may analyse the trajectory of the ball as
if it were a series of identical parabolas. The velocity will then affect the width of
the parabola, with x = ℓ, 2ℓ, . . . being subsequent collisions with vertical walls.
Taking the bottom of our pit as y = 0, we can plot the ball’s trajectory in the
following manner:
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Since the ball is projected horizontally, i.e. with no vertical component of ve-
locity, the time it takes to travel from the top of the pit to the base is constant,
which we shall define as T (representing a single half-parabola). Hence, each
parabola (from root to root) defines a time period of 2T .

In Scenario A, the ball’s trajectory looks like the following image. As it takes
6 half-parabolas to reach the other edge,

vA = ℓ

6T

In Scenario B, the ball collides with two vertical walls; hence, the ball must
have travelled 3ℓ horizontally. As it may only collide with the ground once, we
first suppose that the ball collides with the ground prior to the opposite wall —
this means it must collide with the ground again before reaching 3ℓ, which is a
contradiction. If it instead collides with the original wall before the ground, the
ground collision point will overshoot the halfway point and hence the ball will
not reach the top at 3ℓ. Hence, we may deduce the following trajectory:
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Since this consists of two half-parabolas, It represents a time taken of 2T ; hence,

vB = 3ℓ

2T
vA

vB
= 1

9 ≈ 0.111

The path may be visualised in the following manner:

(b) Similarly to Scenario B, the ball must travel 3ℓ horizontally. However, the
parabola must now have height 3ℓ/2 above the bottom of the pit:
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We now wish to derive expressions for vx and vy at (x, y) = (0, ℓ). Notice that
|vy| is the same at (0, ℓ) and (3ℓ, ℓ), and that vy = 0 at y = 3ℓ/2. Hence,

|vy| =
√√√√02 + 2g

ℓ

2 =
√

gℓ

Letting T be the time taken for the ball to travel its full motion and v′
y the

vertical velocity at the bottom of the pit, we see that

v′
y =

√√√√02 + 2g
3ℓ

2
=
√

3gℓ

T =
v′

y

g

=
√√√√3ℓ

g

Since the ball completes two half-parabolas,

vx = 3ℓ

2T

=
√

3gℓ

2
Hence,

θ = tan−1 vy

vx

= tan−1 2√
3

≈ 49.1°

Note: For part (b), two possible paths exist - the ball may collide with the
ground first, or the opposite wall first. This does not affect the solution of (b),
as we are able to approach it identically regardless of the path and later verify
its correctness.
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We can deduce that P2 is the correct path, by geometrically finding the collision
point with the ground.

Since 3−
√

3
2 < 1, the ball collides with the ground before reaching the opposite

wall, and hence P2 is the correct path.

Setter: Gerrard Tai, gerrard.tai@sgphysicsleague.org
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Problem 35: Hard Work (5 points)

Bob is trying to pump a ball. Model the pump as a vessel with initial volume
V0 = 2.5 × 10−5 m3 and the ball as a vessel with constant volume V1 = 7.0 × 10−3 m3.

Initially, the pump is empty, and the ball is at atmospheric pressure p0. During each
pumping process,

1. Air from the atmosphere first fills up the pump to pressure p0.

2. Bob then pushes down on the pump handle, causing the pump’s volume to
contract until the pressure in the pump is equal to the pressure in the ball.

3. A valve connecting the pump to the ball then opens, and Bob pushes down again
until the volume of the pump is zero.

4. The valve is closed, and the pump volume is restored to V0 by letting air from
the atmosphere fill it up. The cycle then repeats itself.

Assume that air molecules in the atmosphere are diatomic, and all compressions are
adiabatic. Determine the ratio p10

p1
.

Leave your answers to 3 significant figures.

Hint: The pressure in the ball after the n-th cycle can be expressed as pn = p0a
γ
n where

an(n) is some function of n and γ = 1.4 is the heat capacity ratio of atmospheric air.

Solution: We can summarise the pumping process in the n-th cycle into three key
steps. First, the air in the pump undergoes an adiabatic compression from volume V0
to some volume Vn, such that the pressure in the pump goes from p0 to pn−1.

p0V
γ

0 = pn−1V
γ

n (1)
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Second, a valve opens, allowing the air from the two vessels to mix. The pressure in
the ball and pump system remains unchanged at pn−1.

Lastly, the air in the pump and ball system undergoes an adiabatic compression from
volume Vn + V1 to volume V1, resulting in the pressure going from pn−1 to pn.

pn−1(Vn + V1)γ = pnV γ
1 (2)

Equations (1) and (2) can be solved to obtain a recurrence relation for pn.

pn = pn−1

1 + V0

V1

(
pn−1

p0

)− 1
γ

γ

To solve this, we can use the hint given in the question. Substituting the hint into the
recurrence relation,

aγ
n = aγ

n−1

(
1 + V0

V1an−1

)γ

an = an−1 + V0

V1

Remarkably, an is a linear function of n. Since a0 = 1, we have

an = 1 + V0

V1
n

pn = p0

(
1 + V0

V1
n

)γ

p10

p1
=

(
1 + 10V0

V1

)γ

(
1 + V0

V1

)γ ≈ 1.05

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 36: Approximate Magnetic Oscillation (5 points)

Two parallel, infinitely long wires carrying current I = 3.40 mA upwards are fixed
at a large distance d = 1.50 m apart. An electron is in the same plane, halfway
between the two wires, with velocity v = 5.00 m s−1 upwards. The electron is given a
slight horizontal displacement such that it exhibits simple harmonic motion along the
horizontal axis. Find the period of small oscillations, T .

Assume that both gravity and the vertical magnetic force are negligible. Additionally,
as d is extremely large, assume the amplitude of oscillations xmax ≪ d.

Leave your answer to 3 significant figures in units of s.

Solution: Let us define the electron’s horizontal displacement as x⃗, where its equilib-
rium position (also its starting position) is x = 0, taking rightward as positive. The
magnetic field at a point due to an infinitely long wire is

B = µ0I

2πr

where r is the perpendicular distance from the wire to the point. The direction of B⃗
can be determined via the Right Hand Grip Rule.

Since the magnetic fields contributed by each wire act in opposite directions, we con-
sider the difference of the two fields after a small displacement x is introduced to the
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right. The magnetic field becomes:

Bnet = µ0I

2π

 1
d
2 − x

− 1
d
2 + x


= µ0I

πd

 1
1 − 2x

d

− 1
1 − 2x

d


and it points out of the page. Applying a first order approximation of (1+x)−1 ≈ 1−x:

Bnet ≈ µ0I

πd

(
1 + 2x

d
− 1 + 2x

d

)

= 4µ0Ix

πd2

Since F⃗net = −ev⃗ × B⃗net, we can use Fleming’s Left Hand Rule to determine that the
force will point to the left (i.e. opposite to x). Hence,

meẍ = −4evµ0I

πd2 x

This is a simple harmonic motion equation as it is of the form ẍ = −ω2x; hence, the
particle’s angular frequency is:

ω =
√√√√4evµ0I

meπd2

T = 2π

ω
≈ 0.136 s

Remarks: Trust me, everything is a harmonic oscillator.

Setter: Gerrard Tai, gerrard.tai@sgphysicsleague.org
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Problem 37: Daredevil Paul

Paul the daredevil is trying to impress his girlfriend with his newest stunt — running
off a tall tower! Of course, he has no intention of dying, so he reassures her he will
run fast enough such that he can make it around the Earth and come back without
colliding with the ground. He stands on a tower of height h = R above the surface of
the Earth, where R is the radius of the Earth.

Take the mass of Earth to be M = 5.97 × 1024 kg and the radius of Earth to be
R = 6370 km.

(a) Assuming that he runs off the tower horizontally, what is the minimum velocity
u which he needs to run at to survive?

Leave your answer to 2 significant figures in units of m s−1. (4 points)

(b) Sadly, due to a skill issue, Paul only runs at u′ ≡ ηu = 0.6u. Compute vn, the
normal component of the velocity with which he hits the ground.

Leave your answer to 2 significant figures in units of m s−1. (3 points)

Solution:

(a) When Paul runs at his minimum speed, he barely grazes the surface of the
Earth on the other side of his orbit (see Fig. 1). Call Paul’s speed at perigee4 v.
We consider the conservation of energy and angular momentum, evaluating the
values of both integrals of motion at perigee and apogee:

1
2�

�mu2 − GM��m

h + R︸ ︷︷ ︸
energy at apogee

= 1
2�

�mv2 − GM��m

R︸ ︷︷ ︸
energy at perigee

��mu(h + R)︸ ︷︷ ︸
angular momentum at apogee

= ��mvR︸ ︷︷ ︸
angular momentum at perigee

We use the second equation to eliminate v in the first, and multiplying by 2
throughout yields:

u2 − 2GM

h + R
= u2

(
h + R

R

)2
− 2GM

R

Grouping terms once again yields:

2GM

( 1
R

− 1
h + R

)
= u2

(h + R

R

)2
− 1


4The perigee in an orbit around Earth is the point at which the object is closest to the center of the Earth, and the

apogee is the point at which it is the furthest. In general, we use the words periapsis and apoapsis for general orbits;
perigee and apogee apply only to orbits around Earth.
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Substituting h = R into the general case, we see a great simplication in our
equation:

GM

R
= 3u2

u =
√√√√GM

3R
=

√√√√√(6.67 × 10−11 m3 kg−1 s−2)(5.97 × 1024 kg)
3(6370000 m) ≈ 4600 m s−1

(b) Part (b) is solved using very much the same concepts. However, now we do
not compare perigee and apogee. The point where Paul starts still remains the
apogee of the orbit, as the velocity then is perpendicular to the position vector
from the center of the Earth to Paul. However, the second point we are interested
in is the point at which Paul collides with the Earth.

While we cannot easily find the position of this point this is not required. We
know that at this point, Paul is a distance R away from the center of the Earth.
We break his unknown velocity into its normal component vn and tangential
component vt. Since we assume the Earth is spherical (as opposed to, say, flat)
the normal component is also the radial component. Our equations for the
conservation of energy and angular momentum are now:

1
2�

�mu′2 − GM��m

h + R
= 1

2�
�m(v2

t + v2
n) − GM��m

R

��mu′(h + R) = ��mvtR
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Again, we use the second equation to eliminate vt, and multiply by two through-
out:

u′2 − 2GM

h + R
= v2

n + u′2
(

h + R

R

)2
− 2GM

R

v2
n = 2GM

( 1
R

− 1
h + R

)
+ η2u2

1 −
(

h + R

R

)2
Applying the special value h = R, we get:

v2
n = GM

R
− 3η2u2

vn ≈ 6300 m s−1

Alternatively, we could simplify the above expression to:

v2
n = GM

R

(
1 − η2)

Some further insights: One cool fact that was noticed in the setting of this
problem was that the answer is sensitive to the value of η. If we take the
derivative of vn with respect to η, we get:

dvn

dη
= −6ηu2√

GM
R − 3η2u2

The denominator is equal to vn and we have:

lim
η→0

vn = 0
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Hence, the derivative explodes as η → 1. In fact, if η = 0.9 (which was the
original value in the question), the rounding errors can exceed the second sig-
nificant figure. prompting a modification to η = 0.6. Fret not, this is still an
underestimate of Paul’s skill issues.

Setter: Tan Jun Wei, junwei.tan@sgphysicsleague.org
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Problem 38: Hexagonmania (5 points)

Roger is bored, so he decides to use his collection of uniform thin copper rods, each
of resistance R = 1.00 Ω, to create a rigid compound shape shown below. The copper
rods form seven regular hexagons. Calculate the effective resistance RAB between
points A and B.

Leave your answer to 3 significant figures in units of Ω.

Solution:

Although intimidating on first sight, if we patiently simplify the diagram step by step,
the answer can be obtained. We begin by adding up the outer copper rods in series,
obtaining the following setup. Note that all unlabelled segments have resistance R.

Next, we need to make a few observations. We know that different points in a circuit
with the same potential can be connected or disconnected to our convenience. Ob-
serving our above setup, and taking into account its symmetry, we deduce that points
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C1 and C2 have the same potential, and similarly for points D1 and D2, E1 and E2,
and F1 and F2. We then connect each pair of equipotential points, which “folds” the
setup in half:

After collapsing parallel segments and adding up series segments again, we obtain a
remarkably simple setup:

However, simple as it looks, we are actually unable to simplify the setup further
through connecting or disconnecting equipotential points because no points in the
above setup are at the same potential. This is where the ∆ − Y transformation comes
in. Applying the prescribed formula for the transformation, we obtain the following
setup:

Finally, through some hard work and determination, we are left with something we
can solve by hand. After simplification and substituting in R = 1.00 Ω, we obtain:

RAB = 153
80 Ω ≈ 1.91Ω

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 39: Quantum Tunnelling (4 points)

A particle of mass m = 100 g is projected at velocity v0 towards a potential barrier
of height E0 = 0.07000 J. When the particle is near the potential barrier, Paul turns
on his oscillator, and the particle begins to oscillate such that its velocity is given by
v(t) = v0 + ϵω cos(ωt + φ), where ω = 440 Hz and ϵω = 0.5 m s−1.

We measure the average kinetic energy and find it to be K̄ = 0.05625 J. However, we
cannot determine the exact kinetic energy of the particle when it hits the barrier, and
thus cannot know for certain if it will pass through. What we can determine is the
probability that the particle passes through the barrier, p, which you should give as
your answer.

You may assume that ϵ is small, but you may not assume that ϵω is. However, you
may take ϵω < v0 (the particle does not reverse direction due to Paul’s oscillator).

Leave your answer to 2 significant figures.

Your answer should range between 0 and 1.

Solution: The kinetic energy is given by 1
2m(v0 + ϵω cos ξ)2, where ξ = ωt + φ. A

period corresponds to a motion of ξ through 2π. Expanding this gives

K = 1
2mv2

0 + 1
2mϵ2ω2 cos2(ξ) + mv0ϵω cos ξ

First, we seek to find the average kinetic energy K̄. Under a time average, the last
term vanishes, while the first term is unaffected. The average of cos2 is just 1

2 , from
which we get

K̄ = 1
2mv2

0 + 1
4mω2ϵ2 (1)

This allows us to solve for the value of v0 from K̄, which we will use as if given for the
rest of this solution.
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Figure 1: Graphs of K(ξ), E0 and cos ξ are plotted here for the parameters given in
the problem. The region for which K(ξ) > E0 is shaded in red. Notice that despite
there being two ξ values where K(ξ) = E0 there is only one cos ξ value. The possible
existence of more values of cos ξ is left as an exercise to the reader.

The particle tunnels through if and only if the kinetic energy is greater than E0. As
the magnitude of oscillation ϵ is small, the probability of colliding with the barrier is
independent of phase angle, and thus we only need to determine the range of phase
angles for which the energy is higher than E0. The total measure of the intervals where
K(ξ) ≥ E0, divided by 2π, is then the probability of tunnelling. A graph illustrating
this is given in Fig 1.

We seek to find ξ such that K = E0. This yields a quadratic equation in cos ξ:

ϵ2ω2 cos2 ξ + 2v0ϵω cos ξ + v2
0 − 2E0

m
= 0

This can be solved for the two roots:

cos ξ = − v0

ϵω
± 1

2ϵω

√√√√8E0

m

We now have a problem - if you plotted a figure like Fig. 1, we should only have one
root (corresponding to two values of ξ). However, we see two roots here. The only
possible conclusion is that one root does not lead to real values of ξ. It can be shown
that if only one root is in [−1, 1], then it must be the positive root. Determining the
conditions under which there are two roots in [−1, 1] is identical to the exercise left to
the reader in the caption of Fig. 1. Thus, the interval in which K(ξ) > E0 is given by
[−θ, θ], where:
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θ = arccos
− v0

ϵω
+ 1

2ϵω

√√√√8E0

m



Hence, the probability p is given by �2θ

�2π
= θ

π . Numerically, we have v0 = 1 m s−1,
θ ≈ 1.196 and p ≈ 0.38 .

At this point, the author wishes to lament about a more formal approach that ulti-
mately failed. Formally, the probability that the particle is found within an interval
of energy E and E + dE, is given by 1

T

∑ 1
dE/dt , where the sum runs over all points

with the same E. Integrating this will give the probability that the particle is found
with a certain energy. However, the inversion of the (multivalued) functions found in
this problem is too difficult.

The essential idea that was supposed to be expressed using this problem is that quan-
tum tunnelling and superposition are not sufficient to establish quantum mechanics
as different from classical mechanics. While the most unintuitive idea of quantum me-
chanics is allegedly its stochastic nature, this problem shows that a quantum system
cannot effectively be distinguished from a classical one which is unpredictable due to
our lack of knowledge over its state at any time t. Instead, it is entanglement and the
Bell’s Inequalities that underlie what is "truly" quantum.

Setter: Tan Jun Wei, junwei.tan@sgphysicsleague.org
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Problem 40: Crazy Electron (6 points)

An electron and a positron are separated by distance r0 = 100 µm in a region of
uniform magnetic field B = 1.00 mT that is perpendicular to the line joining both
charges. Given that the two charges are released simultaneously from rest, find the
minimum distance rmin achieved between them throughout their motion.

Leave your answer to 3 significant figures in units of µm.

Solution: The motion paths of the electron and positron are shown in in the diagram
below. Since both particles have equal but opposite charges, and the same mass, the
forces acting on them are symmetrical, and so their paths are symmetrical.

Without loss of generality, we consider the motion of the positron. Let the positron
have charge q and mass m. The two forces acting on the positron are the electrostatic
force Fe and the magnetic force Fm. They are each given by:

Fe = kq2

r2

Fm = Bqv

Because the magnetic force acting on the positron is always perpendicular to its veloc-
ity, the magnetic force does no work on the positron. Hence the gain in kinetic energy
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of the positron is only due to the loss of electric potential energy:

EPEi = EPEf + KEf

− q2

4πε0r0
= − q2

4πε0r
+ 2

(1
2mv2

)

= − q2

4πε0r
+ m

(
vx

2 + vy
2)

When the distance between the positron and the electron is a minimum, vx = 0.
Hence, we need to find vy, which is done by considering the force along the y-axis (due
only to the magnetic force):

Fy = Fm cos θ

= Bqvx

m
dvy

dt
= Bq

dx

dt

m
∫

dvy = Bq
∫

dx

mvy = Bqx

vy = Bq

m

(
r0 − r

2

)

Therefore, we substitute the above expression for vy to obtain:

− q2

4πε0r0
= − q2

4πε0r
+ mvy

2

= − q2

4πε0r
+ B2q2(r0 − r)2

4m
1

4πε0

(1
r

− 1
r0

)
= B2(r0 − r)2

4m

r2 − r0r + m

πε0B2r0
= 0

The solution to this quadratic equation is:

r =
r0 −

√
r02 − 4m

πε0B2r0

2
and we take the negative square root of the discriminant since we want the minimum
distance. Substituting numerical values, the minimum distance is:

rmin ≈ 3.39 µm
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Alternative solution: We can also solve this problem by integrating the force on the
positron to get a function for its velocity. The force acting on the positron along the
x-axis Fx is:

Fx = kq2

r2 − Fm sin θ

= kq2

r2 − Bqvy

m
dvx

dt
= kq2

r2 − Bq

(
Bqx

m

)

Using dvx

dt = vx
dvx

dx and r = r0 − 2x, we obtain the differential equation:

vx
dvx

dx
= kq2

(r0 − 2x)2m
− B2q2x

m2∫ vx

0
vx dx =

∫ x

0

 kq2

(r0 − 2x)2m
− B2q2x

m2

 dx

vx
2

2 =
kq2

m

1
2(r0 − 2x)

x

0
−
B2q2

m2
x2

2

x

0

= kq2

2m(r0 − 2x) − kq2

2mr0
− B2q2x2

2m2

When the distance between the positron and the electron is a minimum, vx = 0.
Hence:

kq2

2m(r0 − 2x) − kq2

2mr0
− B2q2x2

2m2 = 0

kr0m − k(r0 − 2x)(m) − B2x2r0(r0 − 2x) = 0
2km − B2r0

2x + 2B2r0x
2 = 0

2x2 − r0x + m

πε0B2r0
= 0

The solution to this quadratic equation is

x =
r0 +

√
r02 − 4m

πε0B2r0

4
and we take the positive square root of the discriminant since when r is a minimum,
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x is a maximum. Hence

rmin = r0 − 2x

= r0 − 2

r0 +
√

r02 − 4m
πε0B2r0

4



=
r0 −

√
r02 − 4m

πε0B2r0

2
≈ 3.39 µm

It is interesting to note that the minimum distance between the two point charges is
independent of their charge magnitude.

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 41: Thermal H Bar (5 points)

5 bars are joined together to form a H-shape (as pictured below). It comprises two
metals: aluminium, of thermal conductivity ka = 200 W m−1 K−1, and copper, of
thermal conductivity kc = 400 W m−1 K−1. Each bar has length ℓ = 0.10 m, and has
a square cross section with width w = 0.0010 m.

The system is placed on a hot plate of constant temperature Th = 100◦C. A thin
conducting sheet with an ice block of constant temperature Tc = 0◦C is then placed
on top of it. What is the rate of heat flow from the hot plate to the ice?

You may assume that no heat is transferred to the air and that the bar’s width is
negligible compared to its length.

Leave you answer to 2 significant figures in units of W.

Solution: For a single conducting bar, the thermal conductivity is related to the rate
of heat transfer by:

dQ

dt
= kA∆T

ℓ

Notice that we are relating a rate of heat flow to a temperature difference — this can
be compared to a circuit analogy, where a similar relation between current (rate of
flow of charges) and potential difference can be established. As the form we wish to
look for is V = IR by Ohm’s Law, we can obtain an equivalent resistance Requiv to
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transform the problem to a circuit problem:

∆T = ℓ

kA

dQ

dt

Requiv = ℓ

kA

= ℓ

kw2

This gives us the following circuit, where Ra = ℓ

kaw2 and Rc = ℓ

kcw2 are the equivalent
resistances of the aluminium and copper bars respectively:

One approach is to perform a Y to delta transformation to simplify our calculations:
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R1 = R2
a + 2RaRc

Ra

= ℓ

w2


1
k2

a

+ 2
kakc

1
ka


= ℓ

w2

( 1
ka

+ 2
kc

)

R2 = R2
a + 2RaRc

Rc

= ℓ

w2

kc

k2
a

+ 2
ka


R3 = ℓ

w2

( 1
ka

+ 2
kc

)
(same as R1)

We can now find the effective resistance:

Reff =
( RaR1

Ra + R1
+ RcR2

Rc + R2

)−1
+ 1

R3

−1

= ℓ

w2
3ka + kc

ka(ka + 3kc)

Hence, we can find the rate of heat flow:

dQ

dt
= ∆T

Reff

≈ 0.28 W

Alternative solution: A more direct method would be to apply Kirchhoff’s Voltage
Rule on each loop. A very convenient method is typically mesh analysis, where we
assign each loop a current and look at their superpositions to obtain the following
equations:

(Ra + Rc)I1 − RaI2 − RcI3 = ∆T

−RaI1 + (2Ra + Rc)I2 − RaI3 = 0
−RcI1 − RaI2 + (2Ra + Rc)I3 = 0

This can be solved conveniently with a computational tool of your choice, such as the
simultaneous equation solving mode on your calculator. If using this method, a helpful
way to check its correctness is to see if the coefficients are diagonally symmetric, and
only the line of symmetry has positive coefficients.

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Problem 42: Oscillating Particles

Consider the two oscillations shown in the figure below. Both graphs show the velocity
v (in m s−1) of the oscillating particle at position x (in m). Each small dotted square
has a side length of 1 unit.

(a) The phase portrait on the left is a circle of radius 2 units, centred on the origin.
What is the period of this oscillation?

Leave your answer to 3 significant figures in units of s. (2 points)

(b) The phase portrait on the right is made up of 8 quarter circles, each with radius
of curvature 1 unit. What is the period of this oscillation?

Leave your answer to 3 significant figures in units of s. (4 points)

Solution:

(a) Recall that the defining equation of SHM is ẍ = −ω2x, which has the general
solution of:

x = A cos(ωt + ϕ)

We can then differentiate it to obtain the particle’s velocity:

v ≡ ẋ = −Aω sin(ωt + ϕ)

Using the trigonometric identity sin2(ωt + ϕ) + cos2(ωt + ϕ) = 1, we obtain: v

ωA

2

+
 x

A

2

= 1
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Hence, we can deduce that the phase portrait for any SHM is either a circle (for
ω = 1) or an ellipse (for ω ̸= 1).

The given phase portrait is a circle, implying that the oscillation is analogous to
SHM with ω = 1 rad s−1. Therefore, the period is given by:

T = 2π

ω
≈ 6.28 s

Alternative solution: Strictly speaking, the first method lacks mathematical
rigour. We deduced that the phase portrait is a circle if the oscillation is SHM
with ω = 1 rad s−1 and then proceeded to draw an analogy between SHM and
the given oscillation to determine its period. However, to be rigorous, we should
instead be proving that the converse is true — if the phase portrait is a circle,
then the oscillation is SHM with ω = 1 rad s−1. As shown below, this can indeed
be proven.

From the given phase portrait, we know that:

ẋ2 + x2 = 4

We can differentiate this with respect to x to obtain:

2ẋ
dẋ

dx
+ 2x = 0

Using ẍ = ẋdẋ
dx , we can re-write the above equation as:

ẍ = −x

which is the defining equation of SHM with ω = 1 rad s−1. Therefore, the period
is:

T = 2π

ω
≈ 6.28 s

(b) In this case, we can no longer rely on the properties of SHM. This, however, does
not mean that the problem is unsolvable. Since v = dx

dt :

T =
∫

dt =
∫ dx

v

over the required interval.5 With the knowledge that the phase portrait is made
up of 8 quarter circles, we can express v as a function of x. By symmetry, we

5This method can also be used to solve part (a), but making the connection to SHM is easier.
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only need to find the time taken for the particle to complete one quarter of an
oscillation. WLOG, let us consider the interval x ∈ [0, 2].

Before we proceed, it would be helpful to recall that the standard form for the
equation of a circle is (x − h)2 + (v − k)2 = r2, which can be re-expressed in the
form:

v = k ±
√

r2 − (x − h)2

Using the above expression for v, we can write the following equation to describe
the complete circle containing the quarter circle in the interval x ∈ [0, 1]:

v = 2 ±
√

1 − (x − 1)2 = 2 ±
√

2x − x2

However, we only want the quarter circle with v ≤ 2, so we reject the positive
square root:

v = 2 −
√

2x − x2

Similarly, the equation for the complete circle containing the quarter circle in
the interval x ∈ (1, 2] is given by:

v = ±
√

1 − (x − 1)2 = ±
√

2x − x2

However, we only want the quarter circle with v ≥ 0. Thus, we can re-write v
as:

v =
√

2x − x2

Combining both expressions, the velocity v for the interval x ∈ [0, 2] can be
written as the following piecewise function:

v =
2 −

√
2x − x2, 0 ≤ x ≤ 1,√

2x − x2, 1 < x ≤ 2.

Now that we have expressed v as a function of x, we can solve for the time taken
t for the particle to move from x = 0 to x = 2:

t =
∫ 1

0

1
2 −

√
2x − x2 dx +

∫ 2

1

1√
2x − x2 dx ≈ 2.4184 s

Hence, the period is T = 4t ≈ 9.67 s .

Note: Phase portraits are often used by physicists and applied mathematicians to
study dynamical systems. Participants who want to learn more about phase portraits
and the broader field of nonlinear dynamics may be interested in reading the following:
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1. Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With applications to
physics, biology, chemistry, and engineering. CRC Press.

2. Raviola, L. A., Véliz, M. E., Salomone, H. D., Olivieri, N. A., & Rodríguez, E.
E. (2016). The bead on a rotating hoop revisited: an unexpected resonance.
European Journal of Physics, 38(1), 015005.

3. Baker, T. E. & Bill, A. (2012). Jacobi elliptic functions and the complete solution
to the bead on the hoop problem. American Journal of Physics, 80(6), 506-514.

4. Glane, S. & Müller, W. H. (2019). The sliding ladder problem revisited in phase
space. American Journal of Physics, 87(6), 444-448.

5. Bissell, J. J. (2022). Bifurcation, stability, and critical slowing down in a simple
mass–spring system. Mechanics Research Communications, 125, 103967.

Note that the given list is by no means exhaustive.

Setter: Robert Frederik Uy, robert.uy@sgphysicsleague.org
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Problem 43: Falling Into a Plane (5 points)

A point charge q = 3.00 mC with mass m = 5.00 × 10−6 kg is held above a large
grounded conducting plane at a distance d0 = 10.0 m from it and released from rest.
How much time t will it take for the point charge to reach the plane? Ignore gravity.

Leave your answer to 3 significant figures in units of ms.

Solution: Using the principle of image charges, the charge distribution induced on
the conducting plane by the charge q produces (in the region above the plane) an
electrostatic field identical to that of a charge −q situated below the plane at the
point which is the mirror image of the body’s position, as if the plane were a mirror.
Thus, the (attractive) electric force acting on the point charge when it is at distance
d from the plane can be calculated using Coulomb’s law as:

F = kq2

(2d)2

=
k
4q2

d2

Notice that this expression is analogous to the expression for Newton’s Law of Gravi-
tation, both of which follow an inverse square law.

k
4q2

d2 ≡ GMm

r2

kq2

4m
≡ GM

Using this analogy, we can apply Kepler’s Third Law which states that:

T 2 = 4π2a3

GM

where T is the orbital period and a is the semi-major axis of the orbit. In this case,
the orbit is an extremely flat ellipse that approaches a straight line, that is, with
eccentricity approaching 1.
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One focus of the ellipse is the center of the electrostatic or gravitational force, which,
in our case, is the point on the plane where d is measured from. Since the focus
approaches the edge of the ellipse, the major axis of the ellipse equals d, thus a = d

2 .
Substituting in our earlier expression for GM , we obtain:

T 2 =
4π2

(
d
2
)3

kq2

4m

T = π

q

√√√√2md3

k

The desired time to fall into the plane is simply half a period. Hence:

t = T

2

= π

q

√√√√md3

2k

≈ 0.552 ms

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org

101

mailto:roger.zhang@sgphysicsleague.org


SPhL 2023 8 July 2023

Problem 44: Dying Photon (6 points)

Alex is doing a physics problem about solar sails. He notices that when photons are
incident on a reflective object, the object gains kinetic energy, while the photons seem
to be reflected with the same energy. Convinced that this will allow him to create a
perpetual motion machine, he carries out an experiment.

A perfectly reflecting block of mass m = 1.0 × 10−21 kg is placed some distance away
from a fixed perfectly reflecting wall. The wall is vertical while the ground is horizontal.
A single photon is shot from a laser calibrated at wavelength λ0 = 1.0 × 10−12 m. The
photon then travels back and forth between the block and the fixed wall. The block
moves only along the horizontal, frictionless ground. What is the velocity v of the
block after n = 5000 collisions between the photon and the wall? Assume that v ≪ c
and h

λ0
≪ mc.

Leave your answers to 2 significant figures in units of m s−1.

Solution: The momentum of a photon is directly proportional to its energy. When
the photon is reflected the wall, it retains exactly the same energy, as the wall gains
no momentum. However, when it is reflected from the block, it loses energy as some
momentum is imparted into the block.

Suppose that the momentum of the photon before and after a collision is p1 and p2
respectively, while the velocity of the block before and after a collision is v1 and v2
respectively. We define p1 to be positive in the +x direction, and p2 to be positive in
the −x direction. We can write down equations for conservation of momentum and
energy.

p1 + mv1 = −p2 + mv2

p1c + 1
2mv2

1 = p2c + 1
2mv2

2

After some effort, we solve the equations for p2 and v2 to obtain

p2 = −p1 − mv1 − mc +
√

m2c2 + 4mcp1 + 2m2cv1 + m2v2
1

v2 = −c +
√

c2 + 4p1c

m
+ 2v1c + v2

1

Here, we already have done all the physics, and it is possible to write a program to
iterate the value of v and p after each successive collision (in fact, this is probably the
quickest method to proceed). However, we can also solve the problem analytically.
We use the fact that v ≪ c and p ≪ mc to carry out a first-order Taylor expansion
on v2:
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v2 = −c + c

√√√√1 + 4 p1

mc
+ 2v1

c
+ v2

1
c2

v2 ≈ −c + c

(
1 + 2 p1

mc
+ v1

c

)

v2 − v1 ≈ 2p1

m

This is in fact the same as if we just assumed p1 = p2! This is because from the
conservation of energy equation, p1 − p2 = 1

c

(1
2mv2

2 − 1
2mv2

1
)

= m
2c(v2 + v1)(v2 − v1),

and since v ≪ c, p1 ≈ p2.

Assuming that the change in v are small during each collision, we can express the
discrete number of collisions n as well as the photon momentum p and block velocity
v as continuous variables to obtain a differential equation for v.

dv

dn
= 2p

m

Here, p is still dependent on n. We can express p in terms of v by using the fact that
energy is conserved. Let the initial momentum of the photon be p0.

p0c = pc + 1
2mv2

p = p0 − mv2

2c

Substituting,
dv

dn
= 2p0

m

1 − mv2

2p0c


∫ v

0

1
1 − mv2

2p0c

dv =
∫ n

0

2p0

m
dn

This is a standard integral that can be solved to obtain

1
2A

ln
(1 + Av

1 − Av

)
= 2p0

m
n

where A =
√ m

2p0c . After solving for n in terms of v, we have

v = 1
A

e4A
p0n
m − 1

e4A
p0n
m + 1

= 1
A

tanh
(2Ap0n

m

)
=
√√√√2p0c

m
tanh


√√√√2p0

mc
n
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We know that p0 = h
λ0

, so

v =
√√√√ 2hc

mλ0
tanh


√√√√ 2h

mcλ0
n

 ≈ 6400 m s−1

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Problem 45: Broken Water Cooler

Roger places a large water bottle in a broken water cooler and fills it up to V0 = 800 ml
with Th = 90°C water. Carelessly, he forgets to take back the bottle, and the broken
water cooler continues to drip water at a constant rate dV

dt = 1.00 ml s−1. The heat
transferred per unit time between the water and the surroundings is proportional to
their difference in temperature, with proportionality constant k = 8.0 J s−1 ◦C−1. The
surrounding temperature is T0 = 25◦C. Assume the surface area of water exposed to
the surroundings during the entire process remains constant, and that the water bottle
is large enough that it will never overflow.

(a) Find the equilibrium temperature Tf of the water after a long period of time.

Leave your answer to 3 significant figures in units of ◦C. (4 points)

(b) Find the time t taken for the water in the bottle to reach T = 60◦C.

Leave your answer to 3 significant figures in units of s. (4 points)

Solution:

(a) Let ρ and c be the density and specific heat capacity of water respectively. The
rate of change of heat dQ

dt in the system is the heat added to the system by
the constant dripping of hot water into the bottle, minus the heat loss to the
surroundings given by Newton’s Law of Cooling:

dQ

dt
= ρc

dV

dt
TH − kT

Note that TH and T are defined relative to the surrounding temperature to
simplify the equation i.e. TH = Th − 25 = 90 − 25 = 65 and T = Tactual − 25 at
any point in time.

Since Q = mcT , we can also write dQ
dt as follows, using the chain rule:

dQ

dt
= d(mcT )

dt

= cT
dm

dt
+ mc

dT

dt

= ρcT
dV

dt
+
(
m0 + ρ

dV

dt
t

)
c
dT

dt

where m is the mass of water in the bottle at any point in time and m0 is the
initial mass of water. Let ρcdV

dt = B to simplify both expressions, then equate
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them:

BTH − kT = BT +
(
m0 + ρ

dV

dt
t

)
c
dT

dt

= BT + m0c
dT

dt
+ Bt

dT

dt

For (a), we take dT
dt = 0 and solve the simplified equation to obtain:

Tf = BTH

B + k
+ 25

≈ 47.3 °C

A likely mistake for (a) is to set dQ
dt = 0 to erroneously obtain Tf = BTH

k + 25 as
the answer. While dQ

dt = 0 is true for most equilibrium temperature systems, hot
water is constantly dripping into this system so heat is still being added even
when the system reaches equilibrium temperature.

(b) For (b), we solve the differential equation using separation of variables. With
the boundary condition that T = TH when t = 0:

(m0c + Bt)dT

dt
+ (B + k)T = BTH∫ T

TH

dT

BTH − (B + k)T =
∫ t

0

dt

m0c + Bt

(m0c)
B+k

B
BTH − (B + k)TH

BTH − (B + k)T = (m0c + Bt)
B+k

B

or T = BTH

B + k
+ (m0c)B+k

B

(m0c + Bt)B+k
B

kTH

B + k

Solving for t when T = 60 − 25 = 35 and substituting numerical values, we
obtain:

t ≈ 415 s

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Problem 46: Rotating Spring

One end of a massless spring of natural length l = 0.100 m and spring constant
k = 50.0 N m−1 is fixed to a point O. The other end of the spring can freely rotate
about O and is attached to a particle of mass m = 1.00 kg. It is also known that the
spring breaks when its length exceeds lmax = 3l. Initially, the spring is straight, at rest,
and at natural length. An instantaneous impulse is then imparted to the particle such
that it moves at an initial velocity v⃗ of arbitrary magnitude and direction. The spring-
mass system is placed on a frictionless flat surface such that the particle’s motion is
constrained to a horizontal plane.

(a) Find vmin, the minimum magnitude of v⃗ required to break the spring.

Leave your answer to 3 significant figures in units of m s−1. (2 points)

(b) Find vmax, the maximum magnitude of v⃗ for which the spring does not break.

Leave your answer to 3 significant figures in units of m s−1. (3 points)

Solution:

Since the required extension lmax for the spring to break is fixed, the elastic potential
energy EPEf when the spring is about to break is also fixed. By conservation of
energy:

initial energy = final energy
1
2m|v⃗|2 = EPEf + KErad,f + KEtan,f

(a) To minimise |v⃗|, we minimise the right-hand side of the above equation, setting
KErad,f = 0 and KEtan,f = 0. This means that the final velocity is 0, and all
of the initial kinetic energy goes into extending the spring until it snaps at the
maximum extension lmax − l = 2l. Considering conservation of energy:

1
2mv2

min = 1
2k(2l)2

=⇒ vmin =
√√√√4kl2

m

≈ 1.41 m s−1

Note that by conservation of angular momentum, KEtan,f = 0 implies KEtan,i =
0. Thus, v⃗ must be purely radial.

(b) Since we are finding the maximum |v⃗| for which the spring does not break, we
want the mass to just reach its maximum extension, with zero radial velocity,
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so KErad,f = 0. From the conservation of energy equation, which is now TE =
1
2m|v⃗|2 = EPEf + KEtan,f, vmax is attained when KEtan,f is maximised.

By conservation of angular momentum, the final tangential velocity must be a
fixed fraction f of the initial tangential velocity. Thus, vmax is achieved when
KEtan,i is maximised. Intuitively, this occurs when v⃗ is purely tangential.6

Since angular momentum is conserved, we have:

lvtan,i = 3lvtan,f =⇒ vtan,f = vmax

3

By conservation of energy, we may now solve for vmax:

1
2mv2

max = 1
2k(2l)2 + 1

2mv2
tan,f

= 2kl2 + 1
18mv2

max

=⇒ 4
9mv2

max = 2kl2

=⇒ vmax =
√√√√9kl2

2m

= 1.50 m s−1

Alternative solution: We employ a more direct mathematical approach. Since the
spring force is a conservative force, the total mechanical energy of the system is con-
served: 1

2m
(
ṙ2 + r2θ̇2) + 1

2k(r − l)2 = 1
2m|v⃗|2

The particle’s angular momentum can be expressed as L = r2θ̇, so we can rewrite the
above equation as:

1
2m

ṙ2 + L2

r2

 + 1
2k(r − l)2 = 1

2m|v⃗|2

Let ṙi and θ̇i be the initial radial and angular velocities of the particle. Considering
the initial velocity of the particle, we know that |v⃗|2 = ṙ2

i + l2θ̇2
i = ṙ2

i + L2/l2, where
6Strictly speaking, this explanation lacks rigour. To show that v⃗ must be purely tangential, we should prove that

all of the initial (kinetic) energy is tangential, that is, the ratio KEtan,i/TE is maximised. By conservation of angular
momentum, KEtan,i/KEtan,f is some constant (depending on initial and final extensions). Thus, maximising the ratio of
KEtan,i/TE is equivalent to maximising η = KEtan,f/TE = KEtan,f/(KEtan,f+EPEf), which can be done by maximising
KEtan,f (as η is a strictly increasing function) or, equivalently, KEtan,i.
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the last equality holds due to the conservation of angular momentum (since the spring
force is a central force). Therefore, we obtain the following expression for L:

L2 = l2(|v⃗|2 − ṙ2
i )

Now, let us consider the system when the spring is at its maximum extension. At this
instant, r = 3l and ṙ = 0. Thus, by the conservation of energy:

m(|v⃗|2 − ṙ2
i )

18 + 2kl2 = 1
2m|v⃗|2

=⇒ 4
9m|v⃗|2 = 2kl2 − 1

18mṙ2
i

We also know that depending on the direction of v⃗, 0 ≤ ṙ2
i ≤ |v⃗|2, which implies that:

2kl2 − 1
18m|v⃗|2 ≤ 4

9m|v⃗|2 ≤ 2kl2

(a) The minimum magnitude of v⃗ is:

vmin =
√√√√4kl2

m
≈ 1.41 m s−1

(b) The maximum magnitude of v⃗ is:

vmax =
√√√√9kl2

2m
= 1.50 m s−1

Setter: Robert Frederik Uy, robert.uy@sgphysicsleague.org
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Problem 47: Möbius Strip (5 points)

Two wires are each strung with 4 resistors, along with another 4 resistors that bridge
pairs of resistors across both wires. The wires are then twisted together to form a
Möbius strip, as shown below.

Every resistor has identical resistance R = 1.0 Ω. Determine the equivalent resistance
Req between the points A and B in the Möbius strip.

Leave your answer to 2 significant figures in units of Ω.

Solution: Imagine “slicing” the Möbius strip along line AB and then opening up and
untwisting the circuit. The circuit can then be redrawn in its deconstructed form:

To determine the resistance Req across AB, we can treat the 1 bridging resistor, of
resistance R, to be in parallel with the rest of the circuit, of unknown resistance R′.

Let us now focus on finding this unknown resistance R′. Notice that due to the
symmetry of this circuit, there are 3 pairs of equipotential points as marked below
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(each pair takes a different colour). As such, we obtain the following equivalent circuit
after combining points A and B on both ends:

From here, we can determine the value of R′ (noting that resistor 6 can be disregarded
since its two ends are equipotential):

R′ = 1
1
R + 1

R

+ 1
1
R + 1

2R + 1
2R + 1

R

+ 1
1
R + 1

R

= 4
3R

We can hence calculate the resistance Req of the complete circuit:

Req = 1
1
R + 1

R′

= 4
7R ≈ 0.57 Ω

Setter: Theodore Yoong, theodore.yoong@sgphysicsleague.org
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Problem 48: Two-Dimensional Gas

Let us model a world as a three-dimensional space with three orthogonal axes x, y and
z. There are two types of gas particles in this world, helium and X. The two types
of particles have the same mass m = 6.6465 × 10−27 kg, and both may be assumed to
display ideal gas behaviour. However, helium is able to move freely through all three
dimensions, while the X particle is confined to the yz-plane (x = 0) and is unable
to move along the x-axis. Assume that the laws of conservation of momentum and
energy continue to hold true in this world, and that all collisions are elastic.

(a) An X particle is placed at (0, 0, 0) with velocity v = 3.00 × 105 m s−1 in a
direction chosen uniformly at random in the yz-plane. It is contained within
a heavy cube with side length a = 1.00 × 10−3 m centred at the origin, with
axis-aligned edges.

The expected value of the time-averaged magnitude of force that the X particle
exerts on the cube through collision with the sides is F , which is given as a
numerical quantity in units of N. Find ln F .

Leave your answer to 3 significant figures. (3 points)

(b) We now consider a collection of n = 1000 particles of X. The ith X particle
starts at a random position on the yz-plane and is given an initial velocity of
vi = i m s−1 in a direction chosen uniformly at random in the yz-plane. The
world is filled with helium gas at temperature T , which is allowed to interact with
the collection of X particles. Calculate the value of T such that the expected
total energy of the X particles stays constant over time.

Leave your answer to 3 significant figures in units of K. (3 points)

(c) We consider another collection of N particles of X, placed inside the cube from
part (a). This collection stays in thermodynamic equilibrium with helium gas
at temperature T , where T is the solution to part (b). The average pressure
exerted on the cube by the X particles is P = 3.00 Pa. Find ln N .

Leave your answer to 3 significant figures. (2 points)
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Solution:

(a) First, we observe that the movements of the particle in the two directions per-
pendicular to the walls are entirely independent. As collision with the walls are
elastic, their speed in each direction is conserved. Hence, we will only consider
a single wall and motion perpendicular to that wall.

Let the velocity perpendicular to the wall be vn. We observe that the change
in momentum for each collision is 2mvn, and that collisions happen when the
particle has travelled to the opposite wall and back, which takes 2a

vn
time. Hence,

the average force on a single wall is m⟨v2
n⟩

a , and the total force on the four relevant
walls must therefore be 4m⟨v2

n⟩
a .

We need to find ⟨v2
n⟩. We notice that v2

p +v2
n = v2 where vp is the velocity parallel

to the wall. Due to symmetry, we have ⟨v2
n⟩ = ⟨v2

p⟩, so ⟨v2
n⟩ = 1

2v2.

Hence:

F = 2mv2

a
= 2 × (6.6465 × 10−27) × (3.00 × 105)2

1.00 × 10−3 ≈ 1.20 × 10−12 N

We thus have ln F ≈ −27.5 .

(b) Since conservation of momentum must be obeyed, whenever a helium particle
collides with an X particle, the X particle must still have zero velocity along the
x-axis, thus the velocity of the helium particle along the x-axis cannot change.
Hence, we can “collapse” the motion of helium into the yz-plane.

In classical thermodynamics, two gases are in thermodynamic equilibrium (and
will not, in aggregate, transfer energy to each other) if and only if their particles
have the same average kinetic energy. We can apply a similar argument to two
gases constrained to move in two dimensions, as we have above. Hence, we
simply need the average kinetic energy of the projection of the helium gas in the
yz-plane to be equal to the average kinetic energy of the X particles.

Using the same symmetry argument we employed in part (a), we can show that
since U = 3

2kT , the average kinetic energy of the projection of the helium gas in
the yz-plane is E = 2

3U = kT . The average kinetic energy of the X particles, on
the other hand, is given by 1

2nm
∑

v2
i = m

12(n + 1)(2n + 1).

Hence, we have:

T = m

12k
(n + 1)(2n + 1) = 6.6465 × 10−27

12(1.38 × 10−23)(1001)(2001) ≈ 80.4 K
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(c) Using 1
2nm

∑
v2

i = m
12(n + 1)(2n + 1), we can deduce that:

⟨v2⟩ =
∑

v2
i

n

= (n + 1)(2n + 1)
6

Hence, to find the expected force F exerted by an X particle on the cube:

F = 2mv2

a
= m

3a
(n + 1)(2n + 1)

Divided over the six faces of the cube, each with area a2, we can calculate that
it amounts to a pressure of m

18a3 (n + 1)(2n + 1) for each particle. Thus:

N = P
m

18a3 (n + 1)(2n + 1)

= 18Pa3

m(n + 1)(2n + 1)

= 18(3.00)(1.00 × 10−3)3

(6.6465 × 10−27)(1001)(2001)
≈ 4.06 × 1012

after which we simply get ln N ≈ 29.0 .

Note: There is actually another way to find N that is much more direct. It can be
shown from the expressions for part (a) and (b) that the equation P ′V ′ = NkT
still holds in two dimensions for our specific setup, assuming that P ′ and V ′ are
defined appropriately (in fact, it can be proven to hold true for ideal gases in any
container in any number of dimensions, but the general proof is a little harder).
P ′ must be defined as the force per unit length of the curve enclosing the two-
dimensional surface containing the gas, for which V ′ is the area. As such, we see
that P ′ is not the P given in the question, but in fact P ′ = 6a2

4a P = 3
2Pa. Then,

since V ′ = a2, NkT = 3
2Pa3. Substituting the value of T from part (b), we get:

N = 3Pa3

2k m
12k(n + 1)(2n + 1) = 18Pa3

m(n + 1)(2n + 1)

which is in fact the same expression as we got using the more complicated
method.

Setter: Shen Xing Yang, xingyang.shen@sgphysicsleague.org
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Half Hour Rush M1: Clogged Bathtub (3 points)

Galen is taking a bath. His bathtub is shaped in the form of a cuboid, with length
L = 2.0 m, width W = 1.0 m and vertical height H = 1.0 m. On the base of the
bathtub is a drainage pipe, which is circular with inner radius r = 0.050 m. Much to
Galen’s dismay, there is a blockage at the pipe’s entrance which requires a downward
force of F = 50 N to be cleared. What is the required depth h of water in the bathtub
to clear the blockage?

Leave your answer to 2 significant figures in units of m.

Solution: We first note that the bathtub’s geometry is irrelevant, as what matters is
the pressure exerted on the blockage itself. The hydrostatic pressure at the base of
the tub is given by:

P = ρwgh

By the definition of pressure, F = PA = Pπr2. Hence, we can solve for the required
value of h:

h = F

ρwgπr2 ≈ 0.65 m

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Half Hour Rush M2: Accidental Exposure (3 points)

We’ve all been there: you’re texting with your phone in the shower, when suddenly
some water accidentally hits your phone’s touchscreen, coincidentally tapping the video
call button. And then it gets awkward...

Suppose that your phone registers a touch input when a minimum contact pressure
Pc = 25 kPa is applied on the screen, and that the showerhead emits a water jet of
uniform velocity v perpendicular to the screen. Find the minimum value of v for which
you risk starting a video call in the shower. Assume that the water is brought to rest
instantaneously upon contact with the screen, and neglect any accumulation of water
on the screen.

Leave your answer to 2 significant figures in units of m s−1.

Solution:

The risk of video call occurs when the water jet hits the call button on the phone
screen. In time dt, the mass of water dm that hits an area A of the phone screen is
given by:

dm = ρAv dt

The momentum carried by dm of water, dp, is thus given by:

dp = ρAv2 dt

Since the water is brought to rest immediately after contacting the screen, the incoming
water loses all of its momentum after the collision. This means that within time dt,
the change in momentum of water is given by dp. Hence, the force F exerted by the
screen on the water is:

F = dp

dt
= ρAv2

By Newton’s Third Law, the force exerted by the water on the screen is also F . As
such, the pressure P exerted by the water on the screen is:

P = F

A
= ρv2

The water activates the touchscreen if P ≥ Pc. Hence, the minimum v is given by:

v ≥
√√√√Pc

ρ
= 5.0 m s−1

For further learning, touch-sensitive screens can actually use many different meth-
ods to register touch input. Here, we assumed pressure sensitivity, but many other
technologies exist! Read more here.

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Half Hour Rush M3: Suspended Showerhead (4 points)

A uniform showerhead is connected to a flexible pipe, and is freely pivoted at this
connection point (in a manner that does not disrupt the flow of water). The show-
erhead is a cylinder with a dry mass m = 0.40 kg and length ℓ1 = 20.0 cm. Water
is supplied through the pipe which extends through the length of the handle, with a
uniform inner radius of r = 0.50 cm:

When Robert turns on the showerhead, water begins to travel at a uniform speed
v = 5.0 m s−1 in the pipe, and emerges perpendicularly from a point l2 = 5.0 cm from
the tip of the showerhead. Robert then notices the showerhead suspends itself at an
acute angle θ from the vertical. Find θ.

Leave your answer to 3 significant figures in units of degrees.

Solution: Let us first establish how the showerhead is able to suspend itself. Recall
that Newton’s Second Law states that the net force on an object is equal to the rate
of change of its momentum; in the case of a mass flow at constant velocity:

F = dp

dt
= v

dm

dt

For the water to change direction abruptly by a right angle, the showerhead must act
on it with a force F ; the water must hence act on the showerhead with an identical
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force, providing a force to suspend the showerhead. By considering the water flowing
through the pipe, we can find the rate at which water is expelled from the showerhead,
which is the mass flow rate:

dm

dt
= πr2ρv

Finally, we equate the clockwise torque due to gravity to the counter-clockwise torque
from the water:

τgrav = τwater

mg
ℓ1

2 sin θ = πr2ρv2(ℓ1 − ℓ2)

θ = sin−1
2πr2ρv2(ℓ1 − ℓ2)

mgℓ1


≈ 48.6°

Notice that since the water travels through the pivot point, the force acting on the
pipe due to the bend at the pivot produces no torque; hence, can disregard it entirely.

Note to readers: the angle in the diagram is actually an unstable equilibrium, but was
chosen due to its visual simplicity. In real life, you may instead notice an angle of
θ = 180° − 48.6° = 131.4°, which is a stable equilibrium.

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Half Hour Rush M4: Bath Fun! (5 points)

While taking a bath in water, Roger plays with his bath toy, a uniform spherical rubber
ball of density ρ = 110 kg m−3. Initially the ball is at rest on the water surface such
that the bottom of the ball is a vertical height h = 2.00 cm below the water surface.
Roger then gives the ball a small vertical displacement, causing it to oscillate with
period T . Ignoring resistive forces, calculate T .

Leave your answer to 3 significant figures in units of s.

Hint: The volume V of a spherical cap with height h on a sphere with radius r is given
by V = πh2

3 (3r − h).

Solution: Since the problem asks for the period of oscillation, we suspect the motion
to be simple harmonic. To confirm this we need to verify that the restoring force
on the ball is indeed proportional to its vertical displacement. First let us use the
information in the problem to determine the radius of the ball. Let the radius of the
ball be r, volume of ball be V , and volume of ball submerged be Vs. By Archimedes’
Principle, the buoyant force on the ball, which balances its weight, equals the weight
of water displaced.

ρgV = ρwgVs

Vs

V
= ρ

ρw
= 110

1000 = 0.11

where V is the volume of a sphere with radius r, which is 4
3πr3, while Vs is the volume

of a spherical cap with height h, which is πh2

3 (3r − h), hence:
πh2

3 (3r − h)
4
3πr3 = 0.11

0.44r3 − 3h2r + h3 = 0

Solving the above cubic equation for r in terms of h yields:

r ≈ 2.4251h
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Consider the ball being displaced vertically downwards by height ∆h. There is now a
resultant force f on the ball due to additional volume of water displaced ∆V . Using
the hint in the problem again, ∆V is given by:

∆V = π(h + ∆h)2

3 (3r − h − ∆h) − πh2

3 (3r − h)

Since ∆h is small compared to h and r, we perform a first order approximation by
cancelling out terms where ∆h is raised to the power of 2 or higher. Simplifying the
expression yields:

∆V ≈ πh(2r − h)∆h

Since f = ρwg∆V :

f ≈ −ρwgπh(2r − h)∆h

You can check that giving the ball a small upwards displacement yields the same ex-
pression for f after performing a first order approximation. Since ρwgπh(2r − h) is a
constant, f is proportional to ∆h and acts in the opposite direction of the displace-
ment, and so the ball oscillates in simple harmonic motion in the vertical axis. From
a = −ω2∆h:

a = −ρwgπh(2r − h)
4
3πr3ρ

∆h

ω =
√√√√3ρwgh(2r − h)

4r3ρ

T = 2π

ω

= 2π

√√√√√ 4r3ρ

3ρwgh(2r − h)
≈ 0.209 s

Setter: Roger Zhang, roger.zhang@sgphysicsleague.org
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Half Hour Rush E1: Simp (3 points)

Amy has a crush on Jake. She hopes to get together with him through the charm of
electrostatic attraction. From a distance of r = 5.0 m, she channels her superpowers
and secretly transfers N = 100 million electrons from Jake’s body to her own body.
What is the magnitude of the attractive force F that she achieves?

Assume that both of them are point particles that are initially neutral and do not
exchange charge with the environment.

Leave your answer to 2 significant figures in units of pN.

Solution: By conservation of charge, the charge of Jake’s body upon losing N electrons
(each of charge −e) is given by +Ne, whereas the charge of Amy’s body upon gaining
these N electrons is given by −Ne. As such, by Coulomb’s Law, the attractive force
F is given by:

F = 1
4πε0

(+Ne)(−Ne)
r2 =⇒ |F | ≈ 0.092 pN

Based on how small F is, Amy has L rizz.

Setter: Christopher Ong, chris.ong@sgphysicsleague.org
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Half Hour Rush E2: A Simple Proposal (4 points)

Josiah bought a small engagement ring of mass m = 1.00 × 10−3 kg, which he wanted
to present to his fiancée in a box with a square base of side length s = 0.100 m and
negligible height. On opening the box, he wanted the ring to hover a short distance
above its centre. To achieve this, he hid a positive point charge +q under the centre
of the box and applied the same positive charge +q to the ring. To constrain the ring
to hover directly above the centre of the box, he tied four thin inextensible strings
of length l = 0.120 m to the ring and secured them to the four corners of the box.
Suppose the ring is small enough to be approximated by a point charge. What is
the minimum charge q required to ensure the four strings remain taut while the ring
hovers above the box?

Leave your answer to 3 significant figures in units of µC.

Solution: Three types of forces act on the hovering ring: the electrostatic repulsion
from the hidden point charge, the weight of the ring, and the tension from the strings.
These forces must cancel for the ring to hover in place.

Let h be the height above the box at which the ring hovers, and let us define the down-
wards direction to be positive. As shown in the diagram, the electrostatic repulsion is
− q2

4πϵ0h2 while the weight from the ring is +mg.

Since the net (downwards) force from the tension of the four strings, T , balances the
gravitational and electrostatic forces on the ring, we have:

T = q2

4πϵ0h2 − mg
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For the strings to remain taut, the tensions in the string must be non-negative, which
implies that:

T = q2

4πϵ0h2 − mg ≥ 0 =⇒ q2 ≥ 4πϵ0mgh2

From the same diagram above and Pythagoras’s theorem, we can infer that:

l2 =
(

s

2

)2
+
(

s

2

)2
+ h2 =⇒ h =

√√√√l2 − s2

2

Substituting this expression for h into the previous equation and isolating q implies
that the charge must be at least:

q ≥
√√√√4πϵ0mg

(
l2 − s2

2

)
≈ 0.101 µC

Setter: Tian Shuhao, shuhao.tian@sgphysicsleague.org

123

mailto:shuhao.tian@sgphysicsleague.org


SPhL 2023 8 July 2023

Half Hour Rush E3: Inducing Love (4 points)

Donghang is planning to propose to his girlfriend, so he bought a square ring of side
length ℓ = 2.00 cm. To make the ring seem more special, he deformed it into the
shape of a heart. As shown in the figure below, the heart-shaped ring consists of three
of the four smaller squares that make up the original square ring. Given that the
self-inductance of the square ring is L□ = 0.100 H, find the self-inductance L♡ of the
heart-shaped ring.

Leave your answer to 3 significant figures in units of H.

Solution:

The self-inductance of a system depends on its geometry. The key to solving this
problem is determining, by dimensional analysis, that the self-inductance LS of any
square loop is proportional to its side length ℓ. The relevant quantities for determining
LS are the permeability of free space µ0 and the side length ℓ. These physical quantities
have the following dimensions:

[LS] = ML2T −2I−2, [µ0] = MLT −2I−2, [ℓ] = L,

where M , L, T and I denote dimensions of mass, length, time and current, respectively.
Notice that it is impossible to form a dimensionless quantity with just µ0 and ℓ, so
the only way to express LS in terms of the given quantities is:

LS = kµ0ℓ,

where k is a dimensionless constant. Indeed, LS ∝ ℓ. Applying this to the problem, we
can then deduce that the self-inductance of a square loop of side length ℓ/2 is L□/2.

Let Φself be the magnetic flux through a square loop of side length ℓ/2 due to an
anticlockwise current I flowing through itself, Φedge be the magnetic flux through a
square loop of side length ℓ/2 due to an anticlockwise current I flowing through an
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identical loop that shares a common edge with it, and Φvertex be the magnetic flux
through a square loop of side length ℓ/2 due to an anticlockwise current I flowing
through an identical loop that shares a common vertex with it.

A square loop of side length ℓ with an anticlockwise current I flowing through it can
be interpreted as four smaller square loops of side length ℓ/2 with an anticlockwise
current I flowing through each of them. Through each smaller square loop, there is
flux Φself due to itself, 2Φedge due to its 2 edge-sharing neighbours, and Φvertex due
to its vertex-sharing neighbour. Thus, the magnetic flux flowing through the whole
square loop of side length ℓ can be expressed as 4Φself + 8Φedge + 4Φvertex. Recalling
that the magnetic flux through any loop is simply the product of its self-inductance
and the current flowing through it, we obtain:

L□I = 4Φself + 8Φedge + 4Φvertex

=⇒ −L□I = 8Φedge + 4Φvertex ∵ Φself = L□I

2
=⇒ −L□I

2 = 4Φedge + 2Φvertex.

Using a similar analysis as above, the magnetic flux through the heart-shaped loop
when an anticlockwise current I flows through it is 3Φself + 4Φedge + 2Φvertex.

Hence, the self-inductance of the heart-shaped loop is:

L♡ = 3Φself + 4Φedge + 2Φvertex

I
= L□ = 0.100 H .

Setter: Robert Frederik Uy, robert.uy@sgphysicsleague.org
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Half Hour Rush E4: An Elaborate Proposal (5 points)

Paul wants to draw a heart in an elaborate manner to impress his crush. To do this,
he carefully creates a region with spatially varying magnetic field B(r⃗) in a direction
perpendicular to the plane of the page. The maximum magnitude of magnetic field
he is capable of producing is Bmax. He then ejects two identical charged particles of
charge q = 0.50 C and mass m = 0.020 kg with equal speeds v = 3.0 m s−1. These
particles travelled in mirrored paths, tracing out a heart-shaped figure with equation
x2 + (y − |x|)2 = 1, where x and y are lengths in units of metres. What is the
minimum value of Bmax for this to be possible? Neglect the forces exerted by the
charged particles on each other.

Leave your answer to 2 significant figures in units of T.

Solution: The force exerted by the magnetic field on the particle is always perpendic-
ular to the direction of the particle’s motion, so the particle’s speed is constant at v.
The acceleration a(r⃗) of the particle is always centripetal, and can be related to the
radius of curvature of its path Rc(r⃗) by the following equation:

a(r⃗) = v2

Rc(r⃗)

We can apply Newton’s second law to relate the particle’s acceleration to the magnetic
field, using scalar quantities:

qvB = ma

B = mv

qRc

The radius of curvature of a Cartesian equation is given by:

Rc =
∣∣∣∣∣∣(1 + [y′]2) 3

2

y′′

∣∣∣∣∣∣
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We only consider positive values of x value due to symmetry, so we can simply remove
the modulus in the equation of the curve. Upon implicit differentiation of the heart
equation and some rearrangement, we have:

y′ = 1 + x

y − x

We differentiate the expression again and use substitutions from before to obtain:

y′′ = − 1
(y − x)3

Substituting into our equation for radius of curvature, we have:

Rc = [(y − x)2 + (y − 2x)2] 3
2

Now, we can express y purely as a function of x by rearranging the original equation
of the curve. Upon substitution, we obtain Rc as a function of x.

Rc = [1 − x2 + (±
√

1 − x2 − x)2] 3
2

To maximise the magnetic field, we must minimise Rc. Naturally, we will choose
the positive square-root upon inspection of our expression. Then, we can find the
minimum value of Rc, using differentiation or a graphical method. This occurs at:

(x, Rc) = (0.85065, 0.23607)

Substituting the numerical values into our earlier equation for the magnetic field, we
get:

Bmax ≈ 0.51 T

Alternative solution: The minimum radius of curvature of the particle’s path can be
found without the use of calculus. Consider the equation of the path, taking only
positive values of x without loss of generality. Upon close inspection, we have the
equation for an ellipse centered at and rotated about the origin. Only the part of the
ellipse with x > 0 is included in the path, and reflected about the y-axis to form the
full heart shape.7

x2 + (y − x)2 = 1
2x2 + y2 − 2xy = 1 (1)

7At this stage, we can directly find the value of the semi-major and semi-minor axis of the ellipse using the coefficients
of the general equation.
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The equation for an ellipse centered at the origin with semi-major axis a, semi-minor
axis b, and rotation angle θ between the ellipse’s major axis and horizontal can be
found with a rotational transformation of the usual equation for an ellipse.

(x cos θ + y sin θ)2

a2 + (x sin θ − y cos θ)2

b2 = 1 (2)

Comparing coefficients for x2, y2 and xy between equations (1) and (2), we have:
(cos θ

a

)2
+
(sin θ

b

)2
= 2 (3)

(sin θ

a

)2
+
(cos θ

b

)2
= 1 (4)

2 sin θ cos θ

( 1
a2 − 1

b2

)
= 2 (5)

Adding equations (3) and (4):
1
a2 + 1

b2 = 3 (6)

Subtracting equation (4) from equation (3):

(cos2 θ − sin2 θ)
( 1

a2 − 1
b2

)
= 1 (7)

We apply the double angle formulae to equations (5) and (7), then square and add
them to obtain: ( 1

a2 − 1
b2

)2
= 5 (8)

We can substitute equation (6) into equation (8), and simplify to obtain a.
( 2

a2 − 3
)2

= 5 (9)

2
a2 = 3 ±

√
5 (10)

a =
√√√√ 2

3 ±
√

5
(11)

Due to the symmetry in equation (8), where a and b can take on each other’s values
and the equation still holds, we deduce that these two possible values of a obtained
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are simply a and b, where a > b. The minimum radius of curvature in an ellipse occurs
at the vertices on the major axis, and is given by Rc = b2

a . Substituting the values of
a and b obtained:

Rc =
2

3+
√

5√
2

3−
√

5

≈ 0.23607 (12)

which gives us the same result of Bmax ≈ 0.51 T obtained earlier.

Setter: Chen Guangyuan, guangyuan.chen@sgphysicsleague.org
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Half Hour Rush X1: Diabolus in Musica (3 points)

Johannes, an organ student, hears of a “cursed interval” in music, which comprises two
notes whose frequencies have a ratio of

√
2. Messing around, he accidentally presses

two notes on the organ to form this interval, summoning his music professor (who
he believes to be the devil). The lower and higher pitched notes are produced with
separate organ pipes of lengths La and Lb respectively. Find the ratio Lb/La.

You may assume that the sound heard is the fundamental frequency and that both
pipes are open on both ends.

Leave your answer to 3 significant figures.

Solution: Firstly, we note that for a pipe of length L open on both ends, the wavelength
of sound at the fundamental frequency is given by λ = 2L. Since v = fλ and the speed
of sound is identical for both organ pipes, the length of the pipe and the fundamental
frequency of the pipe are inversely proportional.

Let the frequencies produced by the pipes of lengths La and Lb be fa and fb respectively.
Hence:

Lb

La
= fa

fb

Since fb is the higher pitched note, it must have the higher frequency. Consequently:

Lb

La
= 1√

2
≈ 0.707

Setter: Brian Siew, brian.siew@sgphysicsleague.org
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Half Hour Rush X2: Sonic Boom (3 points)

A military jet is flying over a hill of vertical height h = 500 m and angle of inclination
θ = 30◦, from west to east. Chris is standing on a point along the west side of the hill
to get a picture of the jet. Approaching from a distance away, the jet flies overhead
at height H = 1000 m with a horizontal velocity of v = 680 m s−1. As this is greater
than the speed of sound in air, a shockwave is generated — a sonic boom.

Let the time at which the jet is directly on top of the western base of the hill be t = 0.
Let the time at which Chris is hit by the sonic boom be t = T . Find the maximum
value of T .

Take the speed of sound in air to be c = 340 m s−1.

Leave your answer to 2 significant figures in units of s.

Solution: A sonic boom creates a series of pressure waves in its wake. Consider a single
point of sound emission. Since the sound is emitted in all directions, the wavefront of
the sound after a time t is a circle of radius ct. During this time, the jet has travelled
a distance vt > ct from the point of emission. The greatest angle between the jet’s
trajectory and the circular wavefront is given by a tangent line from the jet to the
wavefront. This line subtends an angle α from the trajectory of the jet, given by:

α = sin−1 ct

vt
= sin−1 c

v
= 30◦
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Note that as c and v are constant, α is also constant. Hence, the sound waves generated
across the whole trajectory of the jet form a conical shape with cone angle α.

We see that α is the same as θ! In other words, the wavefront is parallel to the surface
of the hill. Hence, the time taken for the pressure wave of the sonic boom to reach
Chris will be identical regardless of his position.

To calculate this, we can find the time taken for the jet to reach a point that lies along
the same line as the west side of the hill:
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Hence, the time taken T can be found:

T = d

v
= H

v tan θ
≈ 2.5 s

Setter: Paul Seow, paul.seow@sgphysicsleague.org
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Half Hour Rush X3: An Impostor Among Us (4 points)

Gray is a crewmate aboard a spaceship consisting of a long row of 50 adjacent rooms,
each of width w = 10.0 m, labelled sequentially from Room 1 to Room 50.

One day, Gray picked up a suspicious encrypted signal and tried to narrow down its
source using an intensity meter. He took a measurement at the centre of Room 1 and
another at the centre of Room 2, and deduced that the source is at the centre of Room
39. However, Room 39 turned out to be empty.

This is because Gray’s intensity meter is suffering from a zero error that leads it to
output measurements that are ∆ = 2.000 × 10−5 W m−2 lower than the actual wave
intensities detected. If Gray’s intensity meter showed I1 = 1.000 × 10−4 W m−2 at the
centre of Room 1, deduce the actual room number of the signal’s source.

Gray had assumed that the waves came from a point source and that the reflection
or absorption of these waves by the intervening walls was negligible. Suppose Gray’s
assumptions and calculations were valid, barring the incorrect measurements.

Leave your answer as an integer from 1 to 50.

Solution: We will introduce our coordinate system such that the origin is w/2 left
of Room 1 and arrange the rooms along the positive x axis, with Room 1 spanning
w/2 ≤ x ≤ 3w/2, Room 2 spanning 3w/2 ≤ x ≤ 5w/2, and so on. The centre of
Room n will therefore be at x = nw. Let the x coordinate of the source be s, and its
intensity distribution be I(x).

The assumptions on the radio waves imply that their intensity obeys the inverse-square
law:

I(x) ∝ 1
(x − s)2

This is because negligible absorption and reflection imply that radio waves transmit
fully in all directions. Just like in free space, a sphere of radius r centered on the
source receives constant power. Distributing this over a surface area proportional to
r2 results in intensities proportional to 1/r2.
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In particular, the inverse square law implies that if I1 is the intensity at x1 and I2 is
the intensity at x2, then:

I1(s − x1)2 = I2(s − x2)2

In Gray’s calculation, the source’s location is s = 39w. The inverse square law tells
us that:

I1(39w − w)2 = I2(39w − 2w)2

and therefore the measurement Gray recorded from the centre of Room 2 must have
been:

I2 = 382

372I1 ≈ 1.055 × 10−4 W m−2

We can now redo the calculations with the corrected values I ′
1 = I1 + ∆, I ′

2 = I2 + ∆,
in order to find the corrected source coordinate s′. Since the inverse square law still
applies, we have:

I ′
1(s′ − w)2 = I ′

2(s′ − 2w)2 =⇒
 s′ − w

s′ − 2w

2

= I ′
2

I ′
1

= I2 + ∆
I1 + ∆

Taking square roots (noting that s′ − 2w, s′ − w > 0 are both positive), we have:

s′ − w

s′ − 2w
=
√√√√I2 + ∆

I1 + ∆ =⇒ s′ − w =
√√√√I2 + ∆

I1 + ∆(s′ − 2w)

=⇒

√√√√I2 + ∆

I1 + ∆ − 1
 s′ =

2
√√√√I2 + ∆

I1 + ∆ − 1
w

which implies:

s′ =
2

√
I2 + ∆ −

√
I1 + ∆√

I2 + ∆ −
√

I1 + ∆

w ≈ 46.3024 w

Since room n covers (n − 1
2)w ≤ x ≤ (n + 1

2)w, s′ lies within room 46 .

Setter: Tian Shuhao, shuhao.tian@sgphysicsleague.org
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Half Hour Rush X4: Doppler’s Confusion (5 points)

In one of his late night musings, Doppler came up with a sophisticated way to measure
the speed of sound. The following day, he went to the lab to conduct two experiments.
In the first one, a sound detector moves at a constant speed v along a circular path of
radius R = 1.00 m. A speaker is then placed a distance d = 0.380 m away from the
centre of the circular path. In the second experiment, the detector and the speaker
swap positions, as shown in the figure below. The frequency data collected by the
detector in both experiments is shown in the graph below. Unfortunately, he forgot to
note down which curve corresponds to each experiment. Find c, the speed of sound.

Leave your answer to 3 significant figures in units of m s−1.
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Solution: Consider a detector and a source both moving. Along the line connecting
the two, if the source is moving at velocity vs and the detector is moving at velocity
vd, then the detected frequency f ′ is related to the source’s frequency f by:

f ′ = vd ± c

vs ± c
f,

where the signs are determined by whether the objects are moving towards or away
from each other.

In the first experiment, the detector is in uniform circular motion around the source.
If the velocity of the detector is making an angle ϕ with the vector pointing from
the detector to the source, then the detected frequency f ′ is related to the source’s
frequency f by:

f ′ =
1 + v

c
cos ϕ

f.

By Sine Rule:
sin θ

R
= sin(π/2 − ϕ)

d
= cos ϕ

d
.

Thus, we can re-write the expression for f ′ as:

f ′ =
1 + vd

cR
sin θ

f.

Since −1 ≤ sin θ ≤ 1:

f ′
min =

1 − vd

cR

f,

f ′
max =

1 + vd

cR

f.

137



SPhL 2023 8 July 2023

Meanwhile, in the second experiment, the source is in uniform circular motion around
the detector. If the velocity of the source is making an angle ϕ with the vector pointing
from the source to the detector, then the detected frequency f ′′ is related to the source’s
frequency f by:

f ′′ = f

1 + v
c cos ϕ

= f

1 + vd
cR sin θ

.

Therefore:

f ′′
min = f

1 + vd
cR

,

f ′′
max = f

1 − vd
cR

.

It is easy to see that f ′
min < f ′′

min and f ′
max < f ′′

max since f , v, d, c and R are positive.
This implies that the red curve corresponds to the first experiment and the blue curve
corresponds to the second one.

We can see from the red curve that f ′
min = 162 Hz and f ′

max = 238 Hz. Taking the
average of these two values, we can deduce that f = 200 Hz.

Recall that v is related to the period T of the circular motion by:

v = 2πR

T
.

Based on the red curve, the period is T = 0.04 s, implying that v = 50π m s−1.

By rearranging the equation defining f ′
min, we obtain:

c = vfd

R(f − f ′
min) .

Plugging in the given values then yields c = 314 m s−1 .

Setter: Robert Frederik Uy, robert.uy@sgphysicsleague.org

138

mailto:robert.uy@sgphysicsleague.org

	Wet Tree
	A: Mysterious Rope
	B: Stuck Sphere
	C: Underwater Lamp
	Relative Work
	D: L
	Variable Resistor
	A Sinking Feeling
	E: Gas Weighing Scale
	F: Help!
	Suspended Triangle
	Video Misinformation
	YouTube
	Choo Choo
	Jaywalking
	Unfreezable
	Falling Chimney
	Spring Collision
	Balanced Plates
	Strange Sphere
	Nuclear Fusion
	Public Nuisance
	Unknown Motion
	Curious Pendulum
	Rainbow
	Rolling Ring
	Three-Body Problem
	Wire Distortion
	Interplanetary Bridge
	Killer Coaster
	Boing Boing
	Pulling a Rope
	Vertical Expansion
	Bad Driver
	Power Saving Mode
	Infinite Energy
	High Level Golf
	So Close Yet So Far
	Problematic Proton
	Triple Bounce
	Hard Work
	Approximate Magnetic Oscillation
	Daredevil Paul
	Hexagonmania
	Quantum Tunnelling
	Crazy Electron
	Thermal H Bar
	Oscillating Particles
	Falling Into a Plane
	Dying Photon
	Broken Water Cooler
	Rotating Spring
	Möbius Strip
	Two-Dimensional Gas
	M1: Clogged Bathtub
	M2: Accidental Exposure
	M3: Suspended Showerhead
	M4: Bath Fun!
	E1: Simp
	E2: A Simple Proposal
	E3: Inducing Love
	E4: An Elaborate Proposal
	X1: Diabolus in Musica
	X2: Sonic Boom
	X3: An Impostor Among Us
	X4: Doppler's Confusion

